Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorPfenning, A.
dc.contributor.authorHartmann, F.
dc.contributor.authorRebello Sousa Dias, M.
dc.contributor.authorCastelano, L.K.
dc.contributor.authorSüßmeier, C.
dc.contributor.authorLanger, F.
dc.contributor.authorHöfling, S.
dc.contributor.authorKamp, M.
dc.contributor.authorMarques, G.E.
dc.contributor.authorWorschech, L.
dc.contributor.authorLopez-Richard, V.
dc.date.accessioned2016-06-01T23:33:07Z
dc.date.available2016-06-01T23:33:07Z
dc.date.issued2015-06-23
dc.identifier.citationPfenning , A , Hartmann , F , Rebello Sousa Dias , M , Castelano , L K , Süßmeier , C , Langer , F , Höfling , S , Kamp , M , Marques , G E , Worschech , L & Lopez-Richard , V 2015 , ' Nanothermometer based on resonant tunneling diodes : from cryogenic to room temperatures ' , ACS Nano , vol. 9 , no. 6 , pp. 6271-6277 . https://doi.org/10.1021/acsnano.5b01831en
dc.identifier.issn1936-0851
dc.identifier.otherPURE: 204824903
dc.identifier.otherPURE UUID: ad4b710e-3222-4117-8167-d6b0a861a49d
dc.identifier.otherScopus: 84934934836
dc.identifier.otherWOS: 000356988500067
dc.identifier.urihttps://hdl.handle.net/10023/8914
dc.descriptionThe authors are grateful for financial support by the BMBF via national project EIPHRIK (FKZ: 13N10710), the European Union (FPVII (2007-2013) under grant agreement No. 256959 NANOPOWER and No. 318287 LANDAUER), and the Brazilian Agencies FAPESP (2013/24253-5, 2012/13052-6, and 2012/51415-3), CNPq and CAPES.en
dc.description.abstractSensor miniaturization together with broadening temperature sensing range are fundamental challenges in nanothermometry. By exploiting a large temperature-dependent screening effect observed in a resonant tunneling diode in sequence with a GaInNAs/GaAs quantum well, we present a low dimensional, wide range, and high sensitive nanothermometer. This sensor shows a large threshold voltage shift of the bistable switching of more than 4.5 V for a temperature raise from 4.5 to 295 K, with a linear voltage-temperature response of 19.2 mV K-1, and a temperature uncertainty in the millikelvin (mK) range. Also, when we monitor the electroluminescence emission spectrum, an optical read-out control of the thermometer is provided. The combination of electrical and optical read-outs together with the sensor architecture excel the device as a thermometer with the capability of noninvasive temperature sensing, high local resolution, and sensitivity.
dc.format.extent7
dc.language.isoeng
dc.relation.ispartofACS Nanoen
dc.rights© 2015, Publisher / the Author(s). This work is made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at pubs.acs.org / https://dx.doi.org/10.1021/acsnano.5b01831en
dc.subjectResonant tunneling diodeen
dc.subjectThermometeren
dc.subjectQC Physicsen
dc.subjectNDASen
dc.subject.lccQCen
dc.titleNanothermometer based on resonant tunneling diodes : from cryogenic to room temperaturesen
dc.typeJournal articleen
dc.description.versionPostprinten
dc.contributor.institutionUniversity of St Andrews. School of Physics and Astronomyen
dc.contributor.institutionUniversity of St Andrews. Condensed Matter Physicsen
dc.identifier.doihttps://doi.org/10.1021/acsnano.5b01831
dc.description.statusPeer revieweden
dc.date.embargoedUntil2016-06-02


This item appears in the following Collection(s)

Show simple item record