St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Spin-valley locking in the normal state of a transition-metal dichalcogenide superconductor

Thumbnail
View/Open
Bawden_2016_Spin_valley_NCOMMS_CC.pdf (933.0Kb)
Date
23/05/2016
Author
Bawden, Lewis
Cooil, S. P.
Riley, Jonathon Mark
Collins-McIntyre, Liam James
Sunko, Veronika
Hunvik, K.
Leandersson, M.
Polley, C. M.
Balasubramanian, T.
Kim, T. K.
Hoesch, M.
Wells, J. W.
Balakrishnan, G.
Bahramy, M. S.
King, Philip David
Funder
The Royal Society
EPSRC
EPSRC
Grant ID
UF120096
EP/I031014/1
EP/L015110/1
Keywords
QC Physics
TK Electrical engineering. Electronics Nuclear engineering
DAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Metallic transition-metal dichalcogenides (TMDCs) are benchmark systems for studying and controlling intertwined electronic orders in solids, with superconductivity developing from a charge density-wave state. The interplay between such phases is thought to play a critical role in the unconventional superconductivity of cuprates, Fe-based, and heavy-fermion systems, yet even for the more moderately-correlated TMDCs, their nature andorigins have proved controversial. Here, we study a prototypical example, 2H-NbSe2, by spin-and angle-resolved photoemission and first-principles theory. We find that the normal state,from which its hallmark collective phases emerge, is characterised by quasiparticles whose spin is locked to their valley pseudospin. This results from a combination of strong spin-orbit interactions and local inversion symmetry breaking, while interlayer coupling further drives a rich three-dimensional momentum dependence of the underlying Fermi surface spintexture. These findings necessitate a re-investigation of the nature of charge order and superconducting pairing in NbSe2 and related TMDCs.
Citation
Bawden , L , Cooil , S P , Riley , J M , Collins-McIntyre , L J , Sunko , V , Hunvik , K , Leandersson , M , Polley , C M , Balasubramanian , T , Kim , T K , Hoesch , M , Wells , J W , Balakrishnan , G , Bahramy , M S & King , P D 2016 , ' Spin-valley locking in the normal state of a transition-metal dichalcogenide superconductor ' , Nature Communications , vol. 7 , 11711 . https://doi.org/10.1038/ncomms11711
Publication
Nature Communications
Status
Peer reviewed
DOI
https://doi.org/10.1038/ncomms11711
ISSN
2041-1723
Type
Journal article
Rights
This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
Description
We gratefully acknowledge support from the Engineering and Physical Sciences Research Council, UK (work at St Andrews under Grant No. EP/I031014/1 and work at Warwick under Grant No. EP/M028771/1) and the International Max Planck partnership. PDCK acknowledges support from the Royal Society through a University Research Fellowship. MSB was supported by the Grant-in-Aid for Scientific Research (S) (No. 24224009) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan. LB, JR, and VS acknowledge studentship funding from EPSRC through grant nos. EP/G03673X/1, EP/L505079/1, and EP/L015110/1, respectively. The experiments at MAX IV Laboratory were made possible through funding from the Swedish Research Council and the Knut and Alice Wallenberg Foundation.
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/8861

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter