Show simple item record

Files in this item


Item metadata

dc.contributor.authorHacker, Christian
dc.contributor.authorAsadi, Jalal
dc.contributor.authorPliotas, Christos
dc.contributor.authorFerguson, Sophie Grace Alicia
dc.contributor.authorSherry, Lee
dc.contributor.authorMarius, Phedra
dc.contributor.authorTello, Javier
dc.contributor.authorJackson, David
dc.contributor.authorNaismith, James Henderson
dc.contributor.authorLucocq, John Milton
dc.identifier.citationHacker , C , Asadi , J , Pliotas , C , Ferguson , S G A , Sherry , L , Marius , P , Tello , J , Jackson , D , Naismith , J H & Lucocq , J M 2016 , ' Nanoparticle suspensions enclosed in methylcellulose : a new approach for quantifying nanoparticles in transmission electron microscopy ' , Scientific Reports , vol. 6 , 25275 .
dc.identifier.otherPURE: 241943444
dc.identifier.otherPURE UUID: fddadfcf-c62b-4c65-9505-8c50a1f44c77
dc.identifier.otherScopus: 84965138214
dc.identifier.otherORCID: /0000-0002-4309-4858/work/31524144
dc.identifier.otherWOS: 000375428500002
dc.identifier.otherORCID: /0000-0001-6637-2155/work/64034496
dc.identifier.otherORCID: /0000-0002-5191-0093/work/64361161
dc.descriptionThis work was supported by the University of St Andrews and Nanomorphomics group funds. The work forms part of an International Patent Application No. PCT/GB2015/052482.en
dc.description.abstractNanoparticles are of increasing importance in biomedicine but quantification is problematic because current methods depend on indirect measurements at low resolution. Here we describe a new high-resolution method for measuring and quantifying nanoparticles in suspension. It involves premixing nanoparticles in a hydrophilic support medium (methylcellulose) before introducing heavy metal stains for visualization in small air-dried droplets by transmission electron microscopy (TEM). The use of methylcellulose avoids artifacts of conventional negative stain-TEM by (1) restricting interactions between the nanoparticles, (2) inhibiting binding to the specimen support films and (3) reducing compression after drying. Methylcellulose embedment provides effective electron imaging of liposomes, nanodiscs and viruses as well as comprehensive visualization of nanoparticle populations in droplets of known size. These qualities facilitate unbiased sampling, rapid size measurement and estimation of nanoparticle numbers by means of ratio counting using a colloidal gold calibrant. Specimen preparation and quantification take minutes and require a few microliters of sample using only basic laboratory equipment and a standard TEM.
dc.relation.ispartofScientific Reportsen
dc.rightsThis work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit
dc.subjectElectron microscopyen
dc.subjectNegative stainen
dc.subjectQD Chemistryen
dc.subjectQH301 Biologyen
dc.subjectRC Internal medicineen
dc.titleNanoparticle suspensions enclosed in methylcellulose : a new approach for quantifying nanoparticles in transmission electron microscopyen
dc.typeJournal articleen
dc.description.versionPublisher PDFen
dc.contributor.institutionUniversity of St Andrews.School of Chemistryen
dc.contributor.institutionUniversity of St Andrews.School of Medicineen
dc.contributor.institutionUniversity of St Andrews.School of Biologyen
dc.contributor.institutionUniversity of St Andrews.The University of St Andrewsen
dc.contributor.institutionUniversity of St Andrews.EaSTCHEMen
dc.contributor.institutionUniversity of St Andrews.Biomedical Sciences Research Complexen
dc.description.statusPeer revieweden

This item appears in the following Collection(s)

Show simple item record