Show simple item record

Files in this item

Thumbnail
Thumbnail

Item metadata

dc.contributor.authorMoran, Robert
dc.contributor.authorMcKay, David
dc.contributor.authorPickard, Chris J.
dc.contributor.authorBerry, Andrew J.
dc.contributor.authorGriffin, John M.
dc.contributor.authorAshbrook, Sharon Elizabeth
dc.date.accessioned2016-05-10T12:30:06Z
dc.date.available2016-05-10T12:30:06Z
dc.date.issued2016-04-21
dc.identifier241426284
dc.identifier1c1a0f26-3f47-4ffb-aadc-d5efb724ab66
dc.identifier84965080932
dc.identifier000374350600035
dc.identifier.citationMoran , R , McKay , D , Pickard , C J , Berry , A J , Griffin , J M & Ashbrook , S E 2016 , ' Hunting for hydrogen : random structure searching and prediction of NMR parameters of hydrous wadsleyite ' , Physical Chemistry Chemical Physics , vol. 18 , no. 15 , pp. 10173-10181 . https://doi.org/10.1039/C6CP01529Hen
dc.identifier.issn1463-9076
dc.identifier.otherORCID: /0000-0003-0362-7848/work/29608112
dc.identifier.otherORCID: /0000-0002-4538-6782/work/56638984
dc.identifier.urihttps://hdl.handle.net/10023/8767
dc.descriptionThe authors would like to thank the ERC (EU FP7 Consolidator Grant 614290 “EXONMR”) and EPSRC for computational support through the Collaborative Computational Project on NMR Crystallography (CCP-NC), via EP/M022501/1 and EP/J501542/1. SEA would like to thank the Royal Society and Wolfson Foundation for a merit award. We thank EaStCHEM for computational support through the EaStCHEM Research Computing Facility.en
dc.description.abstractThe structural chemistry of materials containing low levels of nonstoichiometric hydrogen is difficult to determine, and producing structural models is challenging where hydrogen has no fixed crystallographic site. Here we demonstrate a computational approach employing ab initio Random Structure Searching (AIRSS) to generate a series of cadidate structures for hydrous wadsleyite (β-Mg2SiO4 with 1.6 wt% H2O), a high-pressure mineral proposed as a repository for water in the Earth’s transition zone. Aligning with previous experimental work, we solely consider models with Mg3 (over Mg1, Mg2 or Si) vacancies. We adapt the AIRSS method by starting with anhydrous wadsleyite, removing a single Mg2+ and randomly placing two H+ in a unit cell model, generating 819 candidate structures. 103 geometries were then subjected to more accurate optimisation under periodic DFT. Using this approach, we find the most favourable hydration mechanism involves protonation of two O1 sites around the Mg3 vacancy. The formation of silanol groups on O3 or O4 sites (with loss of stable O1–H hydroxyls) coincides with an increase in total enthalpy. Importantly, the approach we employ allows observables such as NMR parameters to be computed for each structure. We consider hydrous wadsleyite (~1.6 wt%) to be dominated by protonated O1 sites, with O3/O4–H silanol groups present as defects, a model that maps well onto experimental studies at higher levels of hydration (J. M. Griffin et al., Chem. Sci., 2013, 4, 1523). The AIRSS approach adopted herein provides the crucial link between atomic-scale structure and experimental studies.
dc.format.extent9
dc.format.extent2425182
dc.format.extent2312059
dc.language.isoeng
dc.relation.ispartofPhysical Chemistry Chemical Physicsen
dc.subjectQD Chemistryen
dc.subjectDASen
dc.subjectBDCen
dc.subject.lccQDen
dc.titleHunting for hydrogen : random structure searching and prediction of NMR parameters of hydrous wadsleyiteen
dc.typeJournal articleen
dc.contributor.sponsorEPSRCen
dc.contributor.sponsorEPSRCen
dc.contributor.sponsorEPSRCen
dc.contributor.sponsorEuropean Research Councilen
dc.contributor.institutionUniversity of St Andrews. School of Chemistryen
dc.contributor.institutionUniversity of St Andrews. EaSTCHEMen
dc.identifier.doi10.1039/C6CP01529H
dc.description.statusPeer revieweden
dc.identifier.grantnumberEP/M022501/1en
dc.identifier.grantnumberEP/K503587/1en
dc.identifier.grantnumberEP/J501542/1en
dc.identifier.grantnumber614290 - EXONMRen


This item appears in the following Collection(s)

Show simple item record