St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Whole-genome sequencing for routine pathogen surveillance in public health : a population snapshot of invasive Staphylococcus aureus in Europe

Thumbnail
View/Open
Holden_2016_StaphylococcusAureus_mBio_CC.pdf (970.0Kb)
Date
05/05/2016
Author
Aanensen, David M.
Feil, Edward J.
Holden, Matthew T. G.
Dordel, Janina
Yeats, Corin A.
Fedosejev, Artemij
Goater, Richard
Castillo-Ramírez, Santiago
Corander, Jukka
Colijn, Caroline
Chlebowicz, Monika A.
Schouls, Leo
Heck, Max
Pluister, Gerlinde
Ruimy, Raymond
Kahlmeter, Gunnar
Åhman, Jenny
Matuschek, Erika
Friedrich, Alexander W.
Parkhill, Julian
Bentley, Stephen D.
Spratt, Brian G.
Grundmann, Hajo
ESCMID study group on Molecular Epidemiological Markers (ESGEM)
European Staphylococcal Reference Laboratory Working Group
Keywords
RA0421 Public health. Hygiene. Preventive Medicine
NDAS
BDC
Metadata
Show full item record
Abstract
The implementation of routine whole-genome sequencing (WGS) promises to transform our ability to monitor the emergence and spread of bacterial pathogens. Here we combined WGS data from 308 invasive Staphylococcus aureus isolates corresponding to a pan-European population snapshot, with epidemiological and resistance data. Geospatial visualization of the data is made possible by a generic software tool designed for public health purposes that is available at the project URL (http://www.microreact.org/project/EkUvg9uY?tt=rc). Our analysis demonstrates that high-risk clones can be identified on the basis of population level properties such as clonal relatedness, abundance, and spatial structuring and by inferring virulence and resistance properties on the basis of gene content. We also show that in silico predictions of antibiotic resistance profiles are at least as reliable as phenotypic testing. We argue that this work provides a comprehensive road map illustrating the three vital components for future molecular epidemiological surveillance: (i) large-scale structured surveys, (ii) WGS, and (iii) community-oriented database infrastructure and analysis tools. IMPORTANCE: The spread of antibiotic-resistant bacteria is a public health emergency of global concern, threatening medical intervention at every level of health care delivery. Several recent studies have demonstrated the promise of routine whole-genome sequencing (WGS) of bacterial pathogens for epidemiological surveillance, outbreak detection, and infection control. However, as this technology becomes more widely adopted, the key challenges of generating representative national and international data sets and the development of bioinformatic tools to manage and interpret the data become increasingly pertinent. This study provides a road map for the integration of WGS data into routine pathogen surveillance. We emphasize the importance of large-scale routine surveys to provide the population context for more targeted or localized investigation and the development of open-access bioinformatic tools to provide the means to combine and compare independently generated data with publicly available data sets.
Citation
Aanensen , D M , Feil , E J , Holden , M T G , Dordel , J , Yeats , C A , Fedosejev , A , Goater , R , Castillo-Ramírez , S , Corander , J , Colijn , C , Chlebowicz , M A , Schouls , L , Heck , M , Pluister , G , Ruimy , R , Kahlmeter , G , Åhman , J , Matuschek , E , Friedrich , A W , Parkhill , J , Bentley , S D , Spratt , B G , Grundmann , H , ESCMID study group on Molecular Epidemiological Markers (ESGEM) & European Staphylococcal Reference Laboratory Working Group 2016 , ' Whole-genome sequencing for routine pathogen surveillance in public health : a population snapshot of invasive Staphylococcus aureus in Europe ' , mBio , vol. 7 , no. 3 , e00444-16 , pp. 1-15 . https://doi.org/10.1128/mBio.00444-16
Publication
mBio
Status
Peer reviewed
DOI
https://doi.org/10.1128/mBio.00444-16
ISSN
2150-7511
Type
Journal article
Rights
Copyright © 2016 Aanensen et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Description
This work, including the efforts of Matthew Holden, Janina Dordel, Julian Parkhill, and Stephen Bentley, was funded by Wellcome Trust (098051). This work, including the efforts of David M. Aanensen, Corin Yeats, and Artemij Fedosejev, was funded by Wellcome Trust (099202). This work, including the efforts of Brian Spratt, was funded by Wellcome Trust (089472). This work, including the efforts of Santiago Castillo-Ramírez, was funded by Medical Research Council (MRC) (G1000803).
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/8759

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter