St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Register / Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Isothiourea-mediated organocatalytic Michael addition-lactonization on a surface : modification of SAMs on silicon oxide substrates

Thumbnail
View/Open
acs_langmuir5b04686_CC.pdf (1.696Mb)
Date
05/04/2016
Author
Chisholm, Ross
Parkin, John David
Smith, Andrew David
Hähner, Georg
Funder
EPSRC
EPSRC
EPSRC
Grant ID
ep/k000411/1
ep/l017008/1
EP/K031252/1
Keywords
QD Chemistry
DAS
BDC
Metadata
Show full item record
Abstract
Tailoring the functionality of self-assembled monolayers (SAMs) can be achieved either by depositing prefunctionalized molecules with the appropriate terminal groups or by chemical modification of an existing SAM in situ. The latter approach is particularly advantageous to allow for diversity of surface functionalization from a single SAM and if the incorporation of bulky groups is desired. In the present study an organocatalytic isothiourea-mediated Michael addition–lactonization process analogous to a previously reported study in solution is presented. An achiral isothiourea, 3,4-dihydro-2H-pyrimido[2,1-b]benzothiazole (DHPB), promotes the intermolecular Michael addition–lactonization of a trifluoromethylenone terminated SAM and a variety of arylacetic acids affording C(6)-trifluoromethyldihydropyranones tethered to the surface. X-ray photoelectron spectroscopy, atomic force microscopy, contact angle, and ellipsometry analysis were conducted to confirm the presence of the substituted dihydropyranone. A model study of this approach was also performed in solution to probe the reaction diastereoselectivity as it cannot be measured directly on the surface.
Citation
Chisholm , R , Parkin , J D , Smith , A D & Hähner , G 2016 , ' Isothiourea-mediated organocatalytic Michael addition-lactonization on a surface : modification of SAMs on silicon oxide substrates ' , Langmuir , vol. 32 , no. 13 , pp. 3130–3138 . https://doi.org/10.1021/acs.langmuir.5b04686
Publication
Langmuir
Status
Peer reviewed
DOI
https://doi.org/10.1021/acs.langmuir.5b04686
ISSN
0743-7463
Type
Journal article
Rights
(c) 2016 American Chemical Society. This is an open access article published under a Creative Commons Attribution (CC-BY) License, which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.
Description
Financial support from the EPSRC (EP/K000411/1 and EP/L017008/1) is gratefully acknowledged.
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/8727

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter