Show simple item record

Files in this item

Thumbnail
Thumbnail

Item metadata

dc.contributor.authorFlokstra, Machiel Geert
dc.contributor.authorSatchell, N.
dc.contributor.authorKim, J.
dc.contributor.authorBurnell, G.
dc.contributor.authorCurran, P. J.
dc.contributor.authorBending, S. J.
dc.contributor.authorCooper, J. F. K.
dc.contributor.authorKinane, C. J.
dc.contributor.authorLangridge, S.
dc.contributor.authorIsidori, A.
dc.contributor.authorPugach, N.
dc.contributor.authorEschrig, M.
dc.contributor.authorLuetkens, H.
dc.contributor.authorSuter, A.
dc.contributor.authorProkscha, T.
dc.contributor.authorLee, Stephen Leslie
dc.date.accessioned2016-04-04T23:01:59Z
dc.date.available2016-04-04T23:01:59Z
dc.date.issued2016-01
dc.identifier.citationFlokstra , M G , Satchell , N , Kim , J , Burnell , G , Curran , P J , Bending , S J , Cooper , J F K , Kinane , C J , Langridge , S , Isidori , A , Pugach , N , Eschrig , M , Luetkens , H , Suter , A , Prokscha , T & Lee , S L 2016 , ' Remotely induced magnetism in a normal metal using a superconducting spin-valve ' , Nature Physics , vol. 12 , no. 1 , pp. 57–61 . https://doi.org/10.1038/nphys3486en
dc.identifier.issn1745-2473
dc.identifier.otherPURE: 209176173
dc.identifier.otherPURE UUID: b9d3f6b1-8c95-429b-b336-f36f7cc92a29
dc.identifier.otherArXiv: http://arxiv.org/abs/1505.03565v1
dc.identifier.otherScopus: 84954075478
dc.identifier.otherORCID: /0000-0002-2020-3310/work/54995358
dc.identifier.otherORCID: /0000-0002-4333-1358/work/59953699
dc.identifier.otherWOS: 000367835400020
dc.identifier.urihttp://hdl.handle.net/10023/8552
dc.descriptionThe authors acknowledge the support of the EPSRC through Grants No. EP/J01060X, No. EP/J010626/1, No. EP/J010650/1, No. EP/J010634/1, and No. EP/J010618/1, support of a studentship supported by JEOL Europe and the ISIS Neutron and Muon Source, and the support of the RFBR via awards No. 13-02-01452-a, and No. 14-02-90018 Bel-a.en
dc.description.abstractSuperconducting spintronics has emerged in the past decade as a promising new field that seeks to open a new dimension for nanoelectronics by utilizing the internal spin structure of the superconducting Cooper pair as a new degree of freedom1,2. Its basic building blocks are spin-triplet Cooper pairs with equally aligned spins, which are promoted by proximity of a conventional superconductor to a ferromagnetic material with inhomogeneous macroscopic magnetization3. Using low-energy muon spin-rotation experiments we find an unanticipated effect, in contradiction with the existing theoretical models of superconductivity and ferromagnetism: the appearance of a magnetization in a thin layer of a non-magnetic metal (gold), separated from a ferromagnetic double layer by a 50-nm-thick superconducting layer of Nb. The effect can be controlled either by temperature or by using a magnetic field to control the state of the remote ferromagnetic elements, and may act as a basic building block for a new generation of quantum interference devices based on the spin of a Cooper pair.
dc.format.extent6
dc.language.isoeng
dc.relation.ispartofNature Physicsen
dc.rightsCopyright 2015 the Authors. This work is made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at: https://dx.doi.org/10.1038/nphys3486en
dc.rightsCopyright 2015 the Authors. This work is made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at: https://dx.doi.org/10.1038/nphys3486en
dc.subjectQC Physicsen
dc.subjectNDASen
dc.subjectBDCen
dc.subjectR2Cen
dc.subject.lccQCen
dc.titleRemotely induced magnetism in a normal metal using a superconducting spin-valveen
dc.typeJournal articleen
dc.description.versionPostprinten
dc.description.versionPostprinten
dc.contributor.institutionUniversity of St Andrews.School of Physics and Astronomyen
dc.contributor.institutionUniversity of St Andrews.Condensed Matter Physicsen
dc.identifier.doihttps://doi.org/10.1038/nphys3486
dc.description.statusPeer revieweden
dc.date.embargoedUntil2016-04-05
dc.identifier.urlhttps://www.nature.com/articles/nphys3486#Sec5en


This item appears in the following Collection(s)

Show simple item record