Show simple item record

Files in this item


Item metadata

dc.contributor.authorCameron, Peter Jephson
dc.contributor.authorPraeger, Cheryl E.
dc.identifier.citationCameron , P J & Praeger , C E 2016 , ' Constructing flag-transitive, point-imprimitive designs ' , Journal of Algebraic Combinatorics , vol. 43 , no. 4 , pp. 755-769 .
dc.identifier.otherPURE: 178452634
dc.identifier.otherPURE UUID: f3aea31a-fccb-4fe8-8b58-4c88eb5f2a69
dc.identifier.otherScopus: 84926203667
dc.identifier.otherORCID: /0000-0003-3130-9505/work/58055557
dc.identifier.otherWOS: 000378890700002
dc.description.abstractWe give a construction of a family of designs with a specified point-partition and determine the subgroup of automorphisms leaving invariant the point-partition. We give necessary and sufficient conditions for a design in the family to possess a flag-transitive group of automorphisms preserving the specified point-partition. We give examples of flag-transitive designs in the family, including a new symmetric 2-(1408,336,80) design with automorphism group 2^12:((3⋅M22):2) and a construction of one of the families of the symplectic designs (the designs S^−(n) ) exhibiting a flag-transitive, point-imprimitive automorphism group.
dc.relation.ispartofJournal of Algebraic Combinatoricsen
dc.rights© Springer Science+Business Media New York 2015. The final publication is available at Springer via
dc.subjectFlag-transitive designen
dc.subjectAutomorphism groupen
dc.subjectDiscrete Mathematics and Combinatoricsen
dc.subjectAlgebra and Number Theoryen
dc.titleConstructing flag-transitive, point-imprimitive designsen
dc.typeJournal articleen
dc.contributor.institutionUniversity of St Andrews. Pure Mathematicsen
dc.contributor.institutionUniversity of St Andrews. Statisticsen
dc.contributor.institutionUniversity of St Andrews. Centre for Interdisciplinary Research in Computational Algebraen
dc.description.statusPeer revieweden

This item appears in the following Collection(s)

Show simple item record