Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorConstantinescu-Aruxandei, Diana
dc.contributor.authorPetrovic-Stojanovska, Biljana
dc.contributor.authorPenedo, Carlos
dc.contributor.authorWhite, Malcolm F
dc.contributor.authorNaismith, James H
dc.date.accessioned2016-03-28T11:30:04Z
dc.date.available2016-03-28T11:30:04Z
dc.date.issued2016-04-07
dc.identifier.citationConstantinescu-Aruxandei , D , Petrovic-Stojanovska , B , Penedo , C , White , M F & Naismith , J H 2016 , ' Mechanism of DNA loading by the DNA repair helicase XPD ' , Nucleic Acids Research , vol. 44 , no. 6 , pp. 2806-2815 . https://doi.org/10.1093/nar/gkw102en
dc.identifier.issn0305-1048
dc.identifier.otherPURE: 241582820
dc.identifier.otherPURE UUID: 0ebb3709-54a0-479a-a5de-8aeb8fad5f97
dc.identifier.otherPubMed: 26896802
dc.identifier.otherScopus: 84963815703
dc.identifier.otherORCID: /0000-0003-1543-9342/work/47136072
dc.identifier.otherWOS: 000374570500034
dc.identifier.otherORCID: /0000-0002-5807-5385/work/74872764
dc.identifier.urihttps://hdl.handle.net/10023/8501
dc.descriptionFunding: Welcome Trust Programme Grant [WT091825MA to M.F.W., J.H.N.]; Wellcome Trust [099149/Z/12/Z]; Royal Society Wolfson Merit Award (to M.F.W., J.H.N.). Funding for open access charge: Wellcome Trust [WT091825MA].en
dc.description.abstractThe xeroderma pigmentosum group D (XPD) helicase is a component of the transcription factor IIH complex in eukaryotes and plays an essential role in DNA repair in the nucleotide excision repair pathway. XPD is a 5′ to 3′ helicase with an essential iron–sulfur cluster. Structural and biochemical studies of the monomeric archaeal XPD homologues have aided a mechanistic understanding of this important class of helicase, but several important questions remain open. In particular, the mechanism for DNA loading, which is assumed to require large protein conformational change, is not fully understood. Here, DNA binding by the archaeal XPD helicase from Thermoplasma acidophilum has been investigated using a combination of crystallography, cross-linking, modified substrates and biochemical assays. The data are consistent with an initial tight binding of ssDNA to helicase domain 2, followed by transient opening of the interface between the Arch and 4FeS domains, allowing access to a second binding site on helicase domain 1 that directs DNA through the pore. A crystal structure of XPD from Sulfolobus acidocaldiarius that lacks helicase domain 2 has an otherwise unperturbed structure, emphasizing the stability of the interface between the Arch and 4FeS domains in XPD.
dc.format.extent10
dc.language.isoeng
dc.relation.ispartofNucleic Acids Researchen
dc.rightsCopyright © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.en
dc.subjectQH426 Geneticsen
dc.subjectBDCen
dc.subjectR2Cen
dc.subject.lccQH426en
dc.titleMechanism of DNA loading by the DNA repair helicase XPDen
dc.typeJournal articleen
dc.contributor.sponsorThe Royal Societyen
dc.contributor.sponsorThe Wellcome Trusten
dc.description.versionPublisher PDFen
dc.contributor.institutionUniversity of St Andrews. School of Chemistryen
dc.contributor.institutionUniversity of St Andrews. School of Physics and Astronomyen
dc.contributor.institutionUniversity of St Andrews. Biomedical Sciences Research Complexen
dc.contributor.institutionUniversity of St Andrews. School of Biologyen
dc.contributor.institutionUniversity of St Andrews. EaSTCHEMen
dc.identifier.doihttps://doi.org/10.1093/nar/gkw102
dc.description.statusPeer revieweden
dc.identifier.grantnumberWM130081en
dc.identifier.grantnumber091825/Z/10/Zen


This item appears in the following Collection(s)

Show simple item record