Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorStarkey, David
dc.contributor.authorHorne, Keith
dc.contributor.authorVillforth, C.
dc.date.accessioned2016-03-24T17:00:04Z
dc.date.available2016-03-24T17:00:04Z
dc.date.issued2016-02-21
dc.identifier.citationStarkey , D , Horne , K & Villforth , C 2016 , ' Accretion disc time lag distributions : applying CREAM to simulated AGN light curves ' , Monthly Notices of the Royal Astronomical Society , vol. 456 , no. 2 , pp. 1960-1973 . https://doi.org/10.1093/mnras/stv2744en
dc.identifier.issn0035-8711
dc.identifier.otherPURE: 241582000
dc.identifier.otherPURE UUID: dff0111f-5707-4fd5-9296-bf5f1ce4635a
dc.identifier.otherScopus: 84960830735
dc.identifier.otherWOS: 000372264200060
dc.identifier.urihttps://hdl.handle.net/10023/8482
dc.descriptionDAS acknowledges the support of the Science and Technologies Funding Council studentship. KH acknowledges support from the UK Science and Technology Facilities Council (STFC) consolidated grant to St Andrews (ST/M001296/1).en
dc.description.abstractActive galactic nuclei (AGN) vary in their brightness across all wavelengths. Moreover, longer wavelength ultraviolet-optical continuum light curves appear to be delayed with respect to shorter wavelength light curves. A simple way to model these delays is by assuming thermal reprocessing of a variable point source (a lamp post) by a blackbody accretion disc. We introduce a new method, CREAM (Continuum REprocessed AGN Markov Chain Monte Carlo), that models continuum variations using this lamp post model. The disc light curves lag the lamp post emission with a time delay distribution sensitive to the disc temperature-radius profile and inclination.We test CREAM's ability to recover both inclination and product of black hole mass and accretion rate MM˙ , and show that the code is also able to infer the shape of the driving light curve. CREAM is applied to synthetic light curves expected from 1000 s exposures of a 17th magnitude AGN with a 2-m telescope in Sloan g and i bands with Signal-to-Noise Ratio (SNR) of 500-900 depending on the filter and lunar phase.We also test CREAM on poorer quality g and i light curves with SNR = 100. We find in the high-SNR case that CREAM can recover the accretion disc inclination to within an uncertainty of 5° and an MM˙to within 0.04 dex.
dc.format.extent14
dc.language.isoeng
dc.relation.ispartofMonthly Notices of the Royal Astronomical Societyen
dc.rights© 2015 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society. This work is made available online in accordance with the publisher’s policies. This is the final published version of the work, which was originally published at https://dx.doi.org/10.1093/mnras/stv2744en
dc.subjectAccretion, accretion discsen
dc.subjectMethods: statisticalen
dc.subjectQuasars: supermassive black holesen
dc.subjectQC Physicsen
dc.subjectQB Astronomyen
dc.subjectSpace and Planetary Scienceen
dc.subjectAstronomy and Astrophysicsen
dc.subjectNDASen
dc.subject.lccQCen
dc.subject.lccQBen
dc.titleAccretion disc time lag distributions : applying CREAM to simulated AGN light curvesen
dc.typeJournal articleen
dc.contributor.sponsorScience & Technology Facilities Councilen
dc.description.versionPublisher PDFen
dc.contributor.institutionUniversity of St Andrews. School of Physics and Astronomyen
dc.identifier.doihttps://doi.org/10.1093/mnras/stv2744
dc.description.statusPeer revieweden
dc.identifier.grantnumberST/M001296/1en


This item appears in the following Collection(s)

Show simple item record