Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorRiley, Jonathon Mark
dc.contributor.authorMeevasana, Worawat
dc.contributor.authorBawden, Lewis
dc.contributor.authorAsakawa, M.
dc.contributor.authorTakayama, T.
dc.contributor.authorEknapakul, T.
dc.contributor.authorKim, T.K.
dc.contributor.authorHoesch, M.
dc.contributor.authorMo, S.-K.
dc.contributor.authorTakagi, H.
dc.contributor.authorSasagawa, T.
dc.contributor.authorBahramy, M.S.
dc.contributor.authorKing, Phil
dc.date.accessioned2016-03-21T00:01:14Z
dc.date.available2016-03-21T00:01:14Z
dc.date.issued2015-12
dc.identifier211102947
dc.identifier50d5f069-c232-4696-a511-077fa59054b9
dc.identifier84949323040
dc.identifier000366023700012
dc.identifier.citationRiley , J M , Meevasana , W , Bawden , L , Asakawa , M , Takayama , T , Eknapakul , T , Kim , T K , Hoesch , M , Mo , S-K , Takagi , H , Sasagawa , T , Bahramy , M S & King , P 2015 , ' Negative electronic compressibility and tunable spin splitting in WSe 2 ' , Nature Nanotechnology , vol. 10 , pp. 1043-1047 . https://doi.org/10.1038/nnano.2015.217en
dc.identifier.issn1748-3387
dc.identifier.urihttps://hdl.handle.net/10023/8445
dc.descriptionThis work was supported by the Engineering and Physical Sciences Research Council, UK (Grant Nos. EP/I031014/1, EP/M023427/1, EP/L505079/1, and EP/G03673X/1), TRF-SUT Grant RSA5680052 and NANOTEC, Thailand through the CoE Network. PDCK acknowledges support from the Royal Society through a University Research Fellowship. MSB was supported by the Grant-in-Aid for Scientific Research (S) (No. 24224009) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan.en
dc.description.abstractTunable bandgaps1, extraordinarily large exciton-binding energies2, 3, strong light–matter coupling4 and a locking of the electron spin with layer and valley pseudospins5, 6, 7, 8 have established transition-metal dichalcogenides (TMDs) as a unique class of two-dimensional (2D) semiconductors with wide-ranging practical applications9, 10. Using angle-resolved photoemission (ARPES), we show here that doping electrons at the surface of the prototypical strong spin–orbit TMD WSe2, akin to applying a gate voltage in a transistor-type device, induces a counterintuitive lowering of the surface chemical potential concomitant with the formation of a multivalley 2D electron gas (2DEG). These measurements provide a direct spectroscopic signature of negative electronic compressibility (NEC), a result of electron–electron interactions, which we find persists to carrier densities approximately three orders of magnitude higher than in typical semiconductor 2DEGs that exhibit this effect11, 12. An accompanying tunable spin splitting of the valence bands further reveals a complex interplay between single-particle band-structure evolution and many-body interactions in electrostatically doped TMDs. Understanding and exploiting this will open up new opportunities for advanced electronic and quantum-logic devices.
dc.format.extent5
dc.format.extent7104598
dc.language.isoeng
dc.relation.ispartofNature Nanotechnologyen
dc.subjectQC Physicsen
dc.subjectNDASen
dc.subjectBDCen
dc.subjectR2Cen
dc.subject.lccQCen
dc.titleNegative electronic compressibility and tunable spin splitting in WSe2en
dc.typeJournal itemen
dc.contributor.sponsorThe Royal Societyen
dc.contributor.sponsorEPSRCen
dc.contributor.sponsorEPSRCen
dc.contributor.institutionUniversity of St Andrews. School of Physics and Astronomyen
dc.contributor.institutionUniversity of St Andrews. Condensed Matter Physicsen
dc.identifier.doi10.1038/nnano.2015.217
dc.description.statusPeer revieweden
dc.date.embargoedUntil2016-03-21
dc.identifier.grantnumberUF120096en
dc.identifier.grantnumberEP/M023427/1en
dc.identifier.grantnumberEP/I031014/1en


This item appears in the following Collection(s)

Show simple item record