Show simple item record

Files in this item


Item metadata

dc.contributor.authorRiley, Jonathon Mark
dc.contributor.authorMeevasana, Worawat
dc.contributor.authorBawden, Lewis
dc.contributor.authorAsakawa, M.
dc.contributor.authorTakayama, T.
dc.contributor.authorEknapakul, T.
dc.contributor.authorKim, T.K.
dc.contributor.authorHoesch, M.
dc.contributor.authorMo, S.-K.
dc.contributor.authorTakagi, H.
dc.contributor.authorSasagawa, T.
dc.contributor.authorBahramy, M.S.
dc.contributor.authorKing, Phil
dc.identifier.citationRiley , J M , Meevasana , W , Bawden , L , Asakawa , M , Takayama , T , Eknapakul , T , Kim , T K , Hoesch , M , Mo , S-K , Takagi , H , Sasagawa , T , Bahramy , M S & King , P 2015 , ' Negative electronic compressibility and tunable spin splitting in WSe 2 ' , Nature Nanotechnology , vol. 10 , pp. 1043-1047 .
dc.identifier.otherPURE: 211102947
dc.identifier.otherPURE UUID: 50d5f069-c232-4696-a511-077fa59054b9
dc.identifier.otherScopus: 84949323040
dc.identifier.otherWOS: 000366023700012
dc.descriptionThis work was supported by the Engineering and Physical Sciences Research Council, UK (Grant Nos. EP/I031014/1, EP/M023427/1, EP/L505079/1, and EP/G03673X/1), TRF-SUT Grant RSA5680052 and NANOTEC, Thailand through the CoE Network. PDCK acknowledges support from the Royal Society through a University Research Fellowship. MSB was supported by the Grant-in-Aid for Scientific Research (S) (No. 24224009) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan.en
dc.description.abstractTunable bandgaps1, extraordinarily large exciton-binding energies2, 3, strong light–matter coupling4 and a locking of the electron spin with layer and valley pseudospins5, 6, 7, 8 have established transition-metal dichalcogenides (TMDs) as a unique class of two-dimensional (2D) semiconductors with wide-ranging practical applications9, 10. Using angle-resolved photoemission (ARPES), we show here that doping electrons at the surface of the prototypical strong spin–orbit TMD WSe2, akin to applying a gate voltage in a transistor-type device, induces a counterintuitive lowering of the surface chemical potential concomitant with the formation of a multivalley 2D electron gas (2DEG). These measurements provide a direct spectroscopic signature of negative electronic compressibility (NEC), a result of electron–electron interactions, which we find persists to carrier densities approximately three orders of magnitude higher than in typical semiconductor 2DEGs that exhibit this effect11, 12. An accompanying tunable spin splitting of the valence bands further reveals a complex interplay between single-particle band-structure evolution and many-body interactions in electrostatically doped TMDs. Understanding and exploiting this will open up new opportunities for advanced electronic and quantum-logic devices.
dc.relation.ispartofNature Nanotechnologyen
dc.rights© 2015 the Authors. This work is made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at Reuse of archived manuscripts are subject to NPG's Conditions of use policy, here:
dc.subjectQC Physicsen
dc.titleNegative electronic compressibility and tunable spin splitting in WSe2en
dc.typeJournal itemen
dc.contributor.institutionUniversity of St Andrews.School of Physics and Astronomyen
dc.contributor.institutionUniversity of St Andrews.Condensed Matter Physicsen
dc.description.statusPeer revieweden

This item appears in the following Collection(s)

Show simple item record