Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorKlapoetke, Nathan C
dc.contributor.authorMurata, Yasunobu
dc.contributor.authorKim, Sung Soo
dc.contributor.authorPulver, Stefan R
dc.contributor.authorBirdsey-Benson, Amanda
dc.contributor.authorCho, Yong Ku
dc.contributor.authorMorimoto, Tania K
dc.contributor.authorChuong, Amy S
dc.contributor.authorCarpenter, Eric J
dc.contributor.authorTian, Zhijian
dc.contributor.authorWang, Jun
dc.contributor.authorXie, Yinlong
dc.contributor.authorYan, Zhixiang
dc.contributor.authorZhang, Yong
dc.contributor.authorChow, Brian Y
dc.contributor.authorSurek, Barbara
dc.contributor.authorMelkonian, Michael
dc.contributor.authorJayaraman, Vivek
dc.contributor.authorConstantine-Paton, Martha
dc.contributor.authorWong, Gane Ka-Shu
dc.contributor.authorBoyden, Edward S
dc.date.accessioned2016-03-15T09:30:05Z
dc.date.available2016-03-15T09:30:05Z
dc.date.issued2014-03
dc.identifier167959560
dc.identifier35321cf7-9ebc-46e9-af97-9f2a8f3ad32c
dc.identifier24509633
dc.identifier84895524488
dc.identifier.citationKlapoetke , N C , Murata , Y , Kim , S S , Pulver , S R , Birdsey-Benson , A , Cho , Y K , Morimoto , T K , Chuong , A S , Carpenter , E J , Tian , Z , Wang , J , Xie , Y , Yan , Z , Zhang , Y , Chow , B Y , Surek , B , Melkonian , M , Jayaraman , V , Constantine-Paton , M , Wong , G K-S & Boyden , E S 2014 , ' Independent optical excitation of distinct neural populations ' , Nature Methods , vol. 11 , no. 3 , pp. 338-346 . https://doi.org/10.1038/nmeth.2836en
dc.identifier.issn1548-7091
dc.identifier.otherORCID: /0000-0001-5170-7522/work/69463436
dc.identifier.urihttps://hdl.handle.net/10023/8419
dc.description.abstractOptogenetic tools enable examination of how specific cell types contribute to brain circuit functions. A long-standing question is whether it is possible to independently activate two distinct neural populations in mammalian brain tissue. Such a capability would enable the study of how different synapses or pathways interact to encode information in the brain. Here we describe two channelrhodopsins, Chronos and Chrimson, discovered through sequencing and physiological characterization of opsins from over 100 species of alga. Chrimson's excitation spectrum is red shifted by 45 nm relative to previous channelrhodopsins and can enable experiments in which red light is preferred. We show minimal visual system–mediated behavioral interference when using Chrimson in neurobehavioral studies in Drosophila melanogaster. Chronos has faster kinetics than previous channelrhodopsins yet is effectively more light sensitive. Together these two reagents enable two-color activation of neural spiking and downstream synaptic transmission in independent neural populations without detectable cross-talk in mouse brain slice.
dc.format.extent9
dc.format.extent1414169
dc.language.isoeng
dc.relation.ispartofNature Methodsen
dc.subjectAnimalsen
dc.subjectDrosophila Proteinsen
dc.subjectDrosophila melanogasteren
dc.subjectLighten
dc.subjectMolecular Sequence Dataen
dc.subjectNeuronsen
dc.subjectOptogeneticsen
dc.subjectRhodopsinen
dc.subjectRC0321 Neuroscience. Biological psychiatry. Neuropsychiatryen
dc.subjectBDCen
dc.subject.lccRC0321en
dc.titleIndependent optical excitation of distinct neural populationsen
dc.typeJournal articleen
dc.contributor.institutionUniversity of St Andrews. School of Psychology and Neuroscienceen
dc.identifier.doihttps://doi.org/10.1038/nmeth.2836
dc.description.statusPeer revieweden
dc.identifier.urlhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC3943671/en


This item appears in the following Collection(s)

Show simple item record