Apparent cross-field superslow propagation of magnetohydrodynamic waves in solar plasmas
View/ Open
Date
15/10/2015Author
Metadata
Show full item recordAltmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
In this paper we show that the phase mixing of continuum Alfvén waves and/or continuum slow waves in magnetic structures of the solar atmosphere as, e.g., coronal arcades, can create the illusion of wave propagation across the magnetic eld. This phenomenon could be erroneously interpreted as fast mag- netosonic waves. The cross-field propagation due to phase mixing of continuum waves is apparent because there is no real propagation of energy across the magnetic surfaces. We investigate the continuous Alfvén and slow spectra in 2D Cartesian equilibrium models with a purely poloidal magnetic field. We show that apparent superslow propagation across the magnetic surfaces in solar coronal structures is a consequence of the existence of continuum Alfvén waves and continuum slow waves that naturally live on those structures and phase mix as time evolves. The apparent cross-field phase velocity is related to the spatial variation of the local Alfvén/slow frequency across the magnetic surfaces and is slower than the Alfvén/sound velocities for typical coronal conditions. Understanding the nature of the apparent cross-field propagation is important for the correct analysis of numerical simulations and the correct interpretation of observations.
Citation
Kaneko , T , Goossens , M , Soler , R , Terradas , J , Van Doorsselaere , T , Yokoyama , T & Wright , A N 2015 , ' Apparent cross-field superslow propagation of magnetohydrodynamic waves in solar plasmas ' , Astrophysical Journal , vol. 812 , no. 2 , 121 . https://doi.org/10.1088/0004-637X/812/2/121
Publication
Astrophysical Journal
Status
Peer reviewed
ISSN
0004-637XType
Journal article
Rights
© 2015, Publisher / the Author(s). This work is made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at iopscience.iop.org / https://dx.doi.org/10.1088/0004-637X/812/2/121
Description
TK was supported by the Program for Leading Graduate School, MEXT, Japan. This work was supported by JSPS KAKENHI Grant Number 15H03640. RS acknowledges support from MINECO through project AYA2014-54485-P and from FEDER funds. RS also acknowledges support from MINECO through a ‘Juan de la Cierva’ grant, from MECD through project CEF11-0012, and from the ‘Vicerectorat d’Investigació Postgrau’ of the UIB. JT acknowledges support from the Spanish Ministerio de Educación y Ciencia through a Ramón y Cajal grant. JT acknowledges support from MINECO through project AYA2014-54485-P and from FEDER funds. MG was supported by IAP P7/08 CHARM (Belspo) and the GOA-2015-014 (KU Leuven). TVD was supported by an Odysseus grant of the FWO Vlaanderen, the IAP P7/08 CHARM (Belspo) and the GOA-2015-014 (KU Leuven)Collections
Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.