Cavity-enhanced simultaneous dressing of quantum dot exciton and biexciton states
Date
15/03/2016Author
Metadata
Show full item recordAltmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
We demonstrate the simultaneous dressing of both vacuum-to-exciton and exciton-to-biexciton transitions of a single semiconductor quantum dot in a high-Q micropillar cavity, using photoluminescence spectroscopy. Resonant two-photon excitation of the biexciton is achieved by spectrally tuning the quantum dot emission with respect to the cavity mode. The cavity couples to both transitions and amplifies the Rabi-frequency of the likewise resonant cw laser, driving the transitions. We observe strong-field splitting of the emission lines, which depend on the driving Rabi field amplitude and the cavity-laser detuning. A dressed state theory of a driven 4-level atom correctly predicts the distinct spectral transitions observed in the emission spectrum, and a detailed description of the emission spectra is further provided through a polaron master equation approach which accounts for cavity coupling and acoustic phonon interactions of the semiconductor medium.
Citation
Hargart , F , Müller , M , Roy-Choudhury , K , Portalupi , S L , Schneider , C , Höfling , S , Kamp , M , Hughes , S & Michler , P 2016 , ' Cavity-enhanced simultaneous dressing of quantum dot exciton and biexciton states ' , Physical Review. B, Condensed matter and materials physics , vol. 93 , no. 11 , 115308 . https://doi.org/10.1103/PhysRevB.93.115308
Publication
Physical Review. B, Condensed matter and materials physics
Status
Peer reviewed
ISSN
1098-0121Type
Journal article
Rights
© 2016 American Physical Society. This work is made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at http://dx.doi.org/10.1103/PhysRevB.93.115308
Description
The authors acknowledge financial support of the Deutsche Forschungsgemeinschaft (DFG) within the SFB/TRR21 and the projects MI500/23-1 and Ka2318/4-1, and the Natural Sciences and Engineering Research Council of Canada.Collections
Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.