St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

The application of a novel fluidised photo reactor under UV-Visible and natural solar irradiation in the photocatalytic generation of hydrogen

Thumbnail
View/Open
Irvine_NovelFluidised_CEJ_CC.pdf (2.525Mb)
Date
15/02/2016
Author
Skillen, Nathan
Adams, Morgan
McCullagh, Cathy
Ryu, Su Young
Fina, Federica
Hoffman, Michael R.
Irvine, John Thomas Sirr
Robertson, Peter K. J.
Keywords
Hydrogen
Water splitting
Photocatalysis
Fluidised photo reactor
Solar Light
QD Chemistry
NDAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
With advancements in the development of visible light responsive catalysts for H2 production frequently being reported, photocatalytic water splitting has become an attractive method as a potential ‘solar fuel generator’. The development of novel photo reactors which can enhance the potential of such catalyst, however, is rarely reported. This is particularly important as many reactor configurations are mass transport limited, which in turn limits the efficiency of more effective photocatalysts in larger scale applications. This paper describes the performance of a novel fluidised photo reactor for the production of H2 over two catalysts under UV–Visible light and natural solar illumination. Catalysts Pt-C3N4 and NaTaO3·La were dispersed in the reactor and the rate of H2 was determined by GC-TCD analysis of the gas headspace. The unit was an annular reactor constructed from stainless steel 316 and quartz glass with a propeller located in the base to control fluidisation of powder catalysts. Reactor properties such as propeller rotational speed were found to enhance the photo activity of the system through the elimination of mass transport limitations and increasing light penetration. The optimum conditions for H2 evolution were found to be a propeller rotational speed of 1035 rpm and 144 W of UV–Visible irradiation, which produced a rate of 89 μmol h−1 g−1 over Pt-C3N4. Solar irradiation was provided by the George Ellery Hale Solar Telescope, located at the California Institute of Technology.
Citation
Skillen , N , Adams , M , McCullagh , C , Ryu , S Y , Fina , F , Hoffman , M R , Irvine , J T S & Robertson , P K J 2016 , ' The application of a novel fluidised photo reactor under UV-Visible and natural solar irradiation in the photocatalytic generation of hydrogen ' , Chemical Engineering Journal , vol. 286 , pp. 610-621 . https://doi.org/10.1016/j.cej.2015.10.101
Publication
Chemical Engineering Journal
Status
Peer reviewed
DOI
https://doi.org/10.1016/j.cej.2015.10.101
Type
Journal article
Rights
© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/8268

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter