St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Evidence for hydrodynamic electron flow in PdCoO2

Thumbnail
View/Open
Mackenzie_2016_Science_Evidence_AAM.pdf (3.608Mb)
Date
04/03/2016
Author
Moll, Philip J.W.
Kushwaha, Pallavi
Nandi, Nabhamila
Schmidt, Burkhard
Mackenzie, Andrew
Keywords
QC Physics
DAS
BDC
R2C
Metadata
Show full item record
Abstract
Electron transport is conventionally determined by the momentum-relaxing scattering of electrons by the host solid and its excitations. Hydrodynamic fluid flow through channels, in contrast, is determined partly by the viscosity of the fluid, which is governed by momentum-conserving internal collisions. A long-standing question in the physics of solids has been whether the viscosity of the electron fluid plays an observable role in determining the resistance. We report experimental evidence that the resistance of restricted channels of the ultrapure two-dimensional metal palladium coboltate (PdCoO2) has a large viscous contribution. Comparison with theory allows an estimate of the electronic viscosity in the range between 6×10–3 kg(ms)–1 and 3×10–4 kg(ms)–1, versus 1×10–3 kg(ms)–1 for water at room temperature.
Citation
Moll , P J W , Kushwaha , P , Nandi , N , Schmidt , B & Mackenzie , A 2016 , ' Evidence for hydrodynamic electron flow in PdCoO 2 ' , Science , vol. 351 , no. 6277 , pp. 1061-1064 . https://doi.org/10.1126/science.aac8385
Publication
Science
Status
Peer reviewed
DOI
https://doi.org/10.1126/science.aac8385
ISSN
0036-8075
Type
Journal article
Rights
Copyright 2016 the Authors. This work is made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at https://doi.org/10.1126/science.aac8385
Collections
  • University of St Andrews Research
URL
http://www.sciencemag.org/cgi/content/full/science.aac8385/DC1
URI
http://hdl.handle.net/10023/8262

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter