St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Fabrication of a high-quality, porous, surface-confined covalent organic framework on a reactive metal surface

Thumbnail
View/Open
Baddeley_2016_CPC_Fabrication_CCBY.pdf (973.6Kb)
Date
04/04/2016
Author
Larrea, Christian Rodriguez
Baddeley, Christopher John
Keywords
Alloys
Nanostructures
Scanning probe microscopy
Surface chemistry
Thin films
QD Chemistry
QC Physics
NDAS
BDC
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
A major goal of heterogeneous catalysis is to optimize catalytic selectivity. Selectivity is often limited by the fact that most heterogeneous catalysts possess sites with a range of reactivities, resulting in the formation of unwanted by-products. The construction of surface-confined covalent organic frameworks (sCOFs) on catalytically active surfaces is a desirable strategy, as pores can be tailored to operate as catalytic nanoreactors. Direct modification of reactive surfaces is impractical, because the strong molecule–surface interaction precludes monomer diffusion and formation of extended architectures. Herein, we describe a protocol for the formation of a high-quality sCOF on a Pd-rich surface by first fabricating a porous sCOF through Ullmann coupling on a Au-rich bimetallic surface on Pd(111). Once the sCOF has formed, thermal processing induces a Pd-rich surface while preserving the integrity of the sCOF architecture, as evidenced by scanning tunneling microscopy and titration of Pd sites through CO adsorption.
Citation
Larrea , C R & Baddeley , C J 2016 , ' Fabrication of a high-quality, porous, surface-confined covalent organic framework on a reactive metal surface ' , ChemPhysChem , vol. 17 , no. 7 , pp. 971–975 . https://doi.org/10.1002/cphc.201600027
Publication
ChemPhysChem
Status
Peer reviewed
DOI
https://doi.org/10.1002/cphc.201600027
ISSN
1439-4235
Type
Journal article
Rights
© 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Description
Funding: EPSRC DTA (EP/M506631/1).
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/8186

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter