Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorRodriguez-Barrera, Maria Isabel
dc.contributor.authorHelling, Christiane
dc.contributor.authorStark, Craig Ronald
dc.contributor.authorRice, Anna
dc.date.accessioned2016-01-21T12:10:09Z
dc.date.available2016-01-21T12:10:09Z
dc.date.issued2015-12-21
dc.identifier.citationRodriguez-Barrera , M I , Helling , C , Stark , C R & Rice , A 2015 , ' Reference study to characterize plasma and magnetic properties of ultracool atmospheres ' , Monthly Notices of the Royal Astronomical Society , vol. 454 , no. 4 , pp. 3977-3995 . https://doi.org/10.1093/mnras/stv2090en
dc.identifier.issn0035-8711
dc.identifier.otherPURE: 240205495
dc.identifier.otherPURE UUID: 08df06ca-7248-4ef8-a933-78afddf70eda
dc.identifier.otherScopus: 84949294316
dc.identifier.otherWOS: 000368001600052
dc.identifier.urihttps://hdl.handle.net/10023/8054
dc.descriptionThe authors highlight financial support of the European Community under the FP7 by the ERC starting grant 257431.en
dc.description.abstractRadio and X-ray emission from brown dwarfs (BDs) suggest that an ionized gas and a magnetic field with a sufficient flux density must be present. We perform a reference study for late M-dwarfs (MD), BDs and giant gas planet to identify which ultracool objects are most susceptible to plasma and magnetic processes. Only thermal ionization is considered. We utilize the DRIFT-PHOENIX model grid where the local atmospheric structure is determined by the global parameters Teff, log (g) and [M/H]. Our results show that it is not unreasonable to expect Hα or radio emission to origin from BD atmospheres as in particular the rarefied upper parts of the atmospheres can be magnetically coupled despite having low degrees of thermal gas ionization. Such ultracool atmospheres could therefore drive auroral emission without the need for a companion's wind or an outgassing moon. The minimum threshold for the magnetic flux density required for electrons and ions to be magnetized is well above typical values of the global magnetic field of a BD and a giant gas planet. Na+, K+ and Ca+ are the dominating electron donors in low-density atmospheres (low log(g), solar metallicity) independent of Teff. Mg+ and Fe+ dominate the thermal ionization in the inner parts of MD atmospheres. Molecules remain unimportant for thermal ionization. Chemical processes (e.g. cloud formation) affecting the most abundant electron donors, Mg and Fe, will have a direct impact on the state of ionization in ultracool atmospheres.
dc.format.extent19
dc.language.isoeng
dc.relation.ispartofMonthly Notices of the Royal Astronomical Societyen
dc.rights© 2015 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society. This work is made available online in accordance with the publisher’s policies. This is the final published version of the work, which was originally published at: https://dx.doi.org/10.1093/mnras/stv2090en
dc.subjectPlasmasen
dc.subjectPlanets and satellites: atmospheresen
dc.subjectStars: atmospheresen
dc.subjectBrown dwarfsen
dc.subjectRadio continuum: planetary systemsen
dc.subjectRadio lines: planetary systemsen
dc.subjectQC Physicsen
dc.subjectNDASen
dc.subject.lccQCen
dc.titleReference study to characterize plasma and magnetic properties of ultracool atmospheresen
dc.typeJournal articleen
dc.contributor.sponsorEuropean Research Councilen
dc.description.versionPublisher PDFen
dc.contributor.institutionUniversity of St Andrews. School of Physics and Astronomyen
dc.identifier.doihttps://doi.org/10.1093/mnras/stv2090
dc.description.statusPeer revieweden
dc.identifier.urlhttp://arxiv.org/abs/1509.02769en
dc.identifier.grantnumber257431 257431en


This item appears in the following Collection(s)

Show simple item record