St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Two-photon interference at telecom wavelengths for time-bin-encoded single photons from quantum-dot spin qubits

Thumbnail
View/Open
Hofling_2015_NatCom_wavelengths.pdf (1.051Mb)
Date
24/11/2015
Author
Yu, Leo
Natarajan , Chandra M.
Horikiri, Tomoyuki
Langrock, Carsten
Pelc, Jason S.
Tanner, Michael G.
Abe, Eisuke
Maier, Sebastian
Schneider, Christian
Höfling, Sven
Kamp, Martin
Hadfield, Robert H.
Fejer, Martin M.
Yamamoto, Yoshihisa
Keywords
QC Physics
NDAS
Metadata
Show full item record
Abstract
Practical quantum communication between remote quantum memories rely on single photons at telecom wavelengths. Although spin-photon entanglement has been demonstrated in atomic and solid-state qubit systems, the produced single photons at short wavelengths and with polarization encoding are not suitable for long-distance communication, because they suffer from high propagation loss and depolarization in optical fibres. Establishing entanglement between remote quantum nodes would further require the photons generated from separate nodes to be indistinguishable. Here, we report the observation of correlations between a quantum-dot spin and a telecom single photon across a 2-km fibre channel based on time-bin encoding and background-free frequency downconversion. The downconverted photon at telecom wavelengths exhibits two-photon interference with another photon from an independent source, achieving a mean wavepacket overlap of greater than 0.89 despite their original wavelength mismatch (900 and 911 nm). The quantum-networking operations that we demonstrate will enable practical communication between solid-state spin qubits across long distances.
Citation
Yu , L , Natarajan , C M , Horikiri , T , Langrock , C , Pelc , J S , Tanner , M G , Abe , E , Maier , S , Schneider , C , Höfling , S , Kamp , M , Hadfield , R H , Fejer , M M & Yamamoto , Y 2015 , ' Two-photon interference at telecom wavelengths for time-bin-encoded single photons from quantum-dot spin qubits ' , Nature Communications , vol. 6 , 8955 . https://doi.org/10.1038/ncomms9955
Publication
Nature Communications
Status
Peer reviewed
DOI
https://doi.org/10.1038/ncomms9955
ISSN
2041-1723
Type
Journal article
Rights
Copyright 2015 the Authors. This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
Description
This work was supported by the JST through its ImPACT Program, NICT, NSF CCR-08 29694, NIST 60NANB9D9170, Special Coordination Funds for Promoting Science and Technology, and the State of Bavaria. C.L. and M.M.F. acknowledge support through the AFOSR. C.M.N. acknowledges a SU2P Entrepreneurial Fellowship and R.H.H. acknowledges a Royal Society University Research Fellowship.
Collections
  • University of St Andrews Research
URL
http://www.nature.com/ncomms/2015/151124/ncomms9955/full/ncomms9955.html#supplementary-information
URI
http://hdl.handle.net/10023/8041

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter