Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorHaller, Elmar
dc.contributor.authorHudson, James
dc.contributor.authorKelly, Andrew
dc.contributor.authorCotta, Dylan A.
dc.contributor.authorPeaudecerf, Bruno
dc.contributor.authorBruce, Graham D.
dc.contributor.authorKuhr, Stefan
dc.date.accessioned2016-01-13T00:12:14Z
dc.date.available2016-01-13T00:12:14Z
dc.date.issued2015-09
dc.identifier174334745
dc.identifier87da0339-fda9-43c8-9b46-93b7c7c65f06
dc.identifier84940738020
dc.identifier.citationHaller , E , Hudson , J , Kelly , A , Cotta , D A , Peaudecerf , B , Bruce , G D & Kuhr , S 2015 , ' Single-atom imaging of fermions in a quantum-gas microscope ' , Nature Physics , vol. 11 , no. 9 , pp. 738-742 . https://doi.org/10.1038/nphys3403en
dc.identifier.issn1745-2473
dc.identifier.otherArXiv: http://arxiv.org/abs/1503.02005v1
dc.identifier.otherORCID: /0000-0003-3403-0614/work/27379862
dc.identifier.urihttps://hdl.handle.net/10023/8011
dc.descriptionThe authors acknowledge support by EU (ERC-StG FERMILATT, SIQS, Marie Curie Fellowship to E.H.), EPSRC, Scottish Universities Physics Alliance (SUPA).en
dc.description.abstractSingle-atom-resolved detection in optical lattices using quantum-gas microscopes has enabled a new generation of experiments in the field of quantum simulation. Fluorescence imaging of individual atoms has so far been achieved for bosonic species with optical molasses cooling, whereas detection of fermionic alkaline atoms in optical lattices by this method has proven more challenging. Here we demonstrate single-site- and single-atom-resolved fluorescence imaging of fermionic potassium-40 atoms in a quantum-gas microscope setup using electromagnetically-induced-transparency cooling. We detected on average 1000 fluorescence photons from a single atom within 1.5s, while keeping it close to the vibrational ground state of the optical lattice. Our results will enable the study of strongly correlated fermionic quantum systems in optical lattices with resolution at the single-atom level, and give access to observables such as the local entropy distribution and individual defects in fermionic Mott insulators or anti-ferromagnetically ordered phases.
dc.format.extent220341
dc.language.isoeng
dc.relation.ispartofNature Physicsen
dc.subjectQC Physicsen
dc.subjectNDASen
dc.subject.lccQCen
dc.titleSingle-atom imaging of fermions in a quantum-gas microscopeen
dc.typeJournal articleen
dc.contributor.institutionUniversity of St Andrews. School of Physics and Astronomyen
dc.identifier.doi10.1038/nphys3403
dc.description.statusPeer revieweden
dc.date.embargoedUntil2016-01-13
dc.identifier.urlhttp://www.nature.com/nphys/journal/vaop/ncurrent/full/nphys3403.html#supplementary-informationen


This item appears in the following Collection(s)

Show simple item record