Files in this item
Cut-elimination, substitution and normalisation
Item metadata
dc.contributor.author | Dyckhoff, Roy | |
dc.contributor.editor | Wansing, Heinrich | |
dc.date.accessioned | 2016-01-05T10:11:52Z | |
dc.date.available | 2016-01-05T10:11:52Z | |
dc.date.issued | 2015 | |
dc.identifier.citation | Dyckhoff , R 2015 , Cut-elimination, substitution and normalisation . in H Wansing (ed.) , Dag Prawitz on Proofs and Meaning . Outstanding Contributions to Logic , vol. 7 , Springer , pp. 163-187 . https://doi.org/10.1007/978-3-319-11041-7_7 | en |
dc.identifier.isbn | 9783319110400 | |
dc.identifier.isbn | 9783319110417 | |
dc.identifier.isbn | 9783319110417_7 | |
dc.identifier.issn | 2211-2758 | |
dc.identifier.other | PURE: 181526067 | |
dc.identifier.other | PURE UUID: 96bbc647-13a3-4a62-a2dd-0adf33d8d218 | |
dc.identifier.other | Scopus: 85050978316 | |
dc.identifier.other | WOS: 000357742900007 | |
dc.identifier.uri | http://hdl.handle.net/10023/7962 | |
dc.description | Date of Acceptance: 01/2015 | en |
dc.description.abstract | We present a proof (of the main parts of which there is a formal version, checked with the Isabelle proof assistant) that, for a G3-style calculus covering all of intuitionistic zero-order logic, with an associated term calculus, and with a particular strongly normalising and confluent system of cut-reduction rules, every reduction step has, as its natural deduction translation, a sequence of zero or more reduction steps (detour reductions, permutation reductions or simplifications). This complements and (we believe) clarifies earlier work by (e.g.) Zucker and Pottinger on a question raised in 1971 by Kreisel. | |
dc.language.iso | eng | |
dc.publisher | Springer | |
dc.relation.ispartof | Dag Prawitz on Proofs and Meaning | en |
dc.relation.ispartofseries | Outstanding Contributions to Logic | en |
dc.rights | © Springer International Publishing Switzerland 2015. The final publication is available at link.springer.com | en |
dc.subject | Intuitionistic logic | en |
dc.subject | Minimal logic | en |
dc.subject | Sequent calculus | en |
dc.subject | Natural deduction | en |
dc.subject | Cut-elimination | en |
dc.subject | Substitution | en |
dc.subject | Normalisation | en |
dc.subject | QA75 Electronic computers. Computer science | en |
dc.subject | BC Logic | en |
dc.subject.lcc | QA75 | en |
dc.subject.lcc | BC | en |
dc.title | Cut-elimination, substitution and normalisation | en |
dc.type | Book item | en |
dc.description.version | Postprint | en |
dc.contributor.institution | University of St Andrews. School of Computer Science | en |
dc.contributor.institution | University of St Andrews. Centre for Interdisciplinary Research in Computational Algebra | en |
dc.identifier.doi | https://doi.org/10.1007/978-3-319-11041-7_7 | |
dc.description.status | Peer reviewed | en |
dc.date.embargoedUntil | 2016-01-01 |
This item appears in the following Collection(s)
Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.