Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorDyckhoff, Roy
dc.contributor.editorWansing, Heinrich
dc.date.accessioned2016-01-05T10:11:52Z
dc.date.available2016-01-05T10:11:52Z
dc.date.issued2015
dc.identifier181526067
dc.identifier96bbc647-13a3-4a62-a2dd-0adf33d8d218
dc.identifier85050978316
dc.identifier000357742900007
dc.identifier.citationDyckhoff , R 2015 , Cut-elimination, substitution and normalisation . in H Wansing (ed.) , Dag Prawitz on Proofs and Meaning . Outstanding Contributions to Logic , vol. 7 , Springer , pp. 163-187 . https://doi.org/10.1007/978-3-319-11041-7_7en
dc.identifier.isbn9783319110400
dc.identifier.isbn9783319110417
dc.identifier.isbn9783319110417_7
dc.identifier.issn2211-2758
dc.identifier.urihttps://hdl.handle.net/10023/7962
dc.descriptionDate of Acceptance: 01/2015en
dc.description.abstractWe present a proof (of the main parts of which there is a formal version, checked with the Isabelle proof assistant) that, for a G3-style calculus covering all of intuitionistic zero-order logic, with an associated term calculus, and with a particular strongly normalising and confluent system of cut-reduction rules, every reduction step has, as its natural deduction translation, a sequence of zero or more reduction steps (detour reductions, permutation reductions or simplifications). This complements and (we believe) clarifies earlier work by (e.g.) Zucker and Pottinger on a question raised in 1971 by Kreisel.
dc.format.extent164626
dc.language.isoeng
dc.publisherSpringer
dc.relation.ispartofDag Prawitz on Proofs and Meaningen
dc.relation.ispartofseriesOutstanding Contributions to Logicen
dc.subjectIntuitionistic logicen
dc.subjectMinimal logicen
dc.subjectSequent calculusen
dc.subjectNatural deductionen
dc.subjectCut-eliminationen
dc.subjectSubstitutionen
dc.subjectNormalisationen
dc.subjectQA75 Electronic computers. Computer scienceen
dc.subjectBC Logicen
dc.subject.lccQA75en
dc.subject.lccBCen
dc.titleCut-elimination, substitution and normalisationen
dc.typeBook itemen
dc.contributor.institutionUniversity of St Andrews. School of Computer Scienceen
dc.contributor.institutionUniversity of St Andrews. Centre for Interdisciplinary Research in Computational Algebraen
dc.identifier.doihttps://doi.org/10.1007/978-3-319-11041-7_7
dc.description.statusPeer revieweden
dc.date.embargoedUntil2016-01-01


This item appears in the following Collection(s)

Show simple item record