Modified strontium titanates : from defect chemistry to SOFC anodes
Abstract
Modified strontium titanates have received much attention recently for their potential as anode material in solid oxide fuel cells (SOFC). Their inherent redox stability and superior tolerance to sulphur poisoning and coking as compared to Ni based cermet anodes could improve durability of SOFC systems dramatically. Various substitution strategies can be deployed to optimise materials properties in these strontium titanates, such as electronic conductivity, electrocatalytic activity, chemical stability and sinterability, and thus mechanical strength. Substitution strategies not only cover choice and amount of substituent, but also perovskite defect chemistry, distinguishing between A-site deficiency (A1-xBO3) and cation-stoichiometry (ABO3+δ). Literature suggests distinct differences in the materials properties between the latter two compositional approaches. After discussing the defect chemistry of modified strontium titanates, this paper reviews three different A-site deficient donor (La, Y, Nb) substituted strontium titanates for their electrical behaviour and fuel cell performance. Promising performances in both electrolyte as well as anode supported cell designs have been obtained, when using hydrogen as fuel. Performances are retained after numerous redox cycles. Long term stability in sulphur and carbon containing fuels still needs to be explored in greater detail.
Citation
Verbraeken , M C , Ramos , T , Agersted , K , Ma , Q , Savaniu , C D , Sudireddy , B R , Irvine , J T S , Holtappels , P & Tietz , F 2015 , ' Modified strontium titanates : from defect chemistry to SOFC anodes ' , Royal Society of Chemistry Advances , vol. 5 , no. 2 , pp. 1168-1180 . https://doi.org/10.1039/c4ra09751c
Publication
Royal Society of Chemistry Advances
Status
Peer reviewed
Type
Journal item
Rights
© Royal Society of Chemistry 2014. This work is made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at http://dx.doi.org/10.1039/C4RA09751C
Description
The authors acknowledge funding from the Fuel Cells and Hydrogen Joint Undertaking under grant agreement no. 256730.Collections
Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.