St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Modified strontium titanates : from defect chemistry to SOFC anodes

Thumbnail
View/Open
A_site_deficient_SrTiO3_new_review_revision_051114.pdf (2.387Mb)
Date
2015
Author
Verbraeken, Maarten Christiaan
Ramos, T
Agersted, K
Ma, Q
Savaniu, Cristian Daniel
Sudireddy, B R
Irvine, John Thomas Sirr
Holtappels, Peter
Tietz, F
Keywords
QD Chemistry
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Modified strontium titanates have received much attention recently for their potential as anode material in solid oxide fuel cells (SOFC). Their inherent redox stability and superior tolerance to sulphur poisoning and coking as compared to Ni based cermet anodes could improve durability of SOFC systems dramatically. Various substitution strategies can be deployed to optimise materials properties in these strontium titanates, such as electronic conductivity, electrocatalytic activity, chemical stability and sinterability, and thus mechanical strength. Substitution strategies not only cover choice and amount of substituent, but also perovskite defect chemistry, distinguishing between A-site deficiency (A1-xBO3) and cation-stoichiometry (ABO3+δ). Literature suggests distinct differences in the materials properties between the latter two compositional approaches. After discussing the defect chemistry of modified strontium titanates, this paper reviews three different A-site deficient donor (La, Y, Nb) substituted strontium titanates for their electrical behaviour and fuel cell performance. Promising performances in both electrolyte as well as anode supported cell designs have been obtained, when using hydrogen as fuel. Performances are retained after numerous redox cycles. Long term stability in sulphur and carbon containing fuels still needs to be explored in greater detail.
Citation
Verbraeken , M C , Ramos , T , Agersted , K , Ma , Q , Savaniu , C D , Sudireddy , B R , Irvine , J T S , Holtappels , P & Tietz , F 2015 , ' Modified strontium titanates : from defect chemistry to SOFC anodes ' , Royal Society of Chemistry Advances , vol. 5 , no. 2 , pp. 1168-1180 . https://doi.org/10.1039/c4ra09751c
Publication
Royal Society of Chemistry Advances
Status
Peer reviewed
DOI
https://doi.org/10.1039/c4ra09751c
Type
Journal item
Rights
© Royal Society of Chemistry 2014. This work is made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at http://dx.doi.org/10.1039/C4RA09751C
Description
The authors acknowledge funding from the Fuel Cells and Hydrogen Joint Undertaking under grant agreement no. 256730.
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/7850

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter