Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorAntonellini, S.
dc.contributor.authorKamp, I.
dc.contributor.authorRiviere-Marichalar, P.
dc.contributor.authorMeijerink, R.
dc.contributor.authorWoitke, Peter
dc.contributor.authorThi, W.-F.
dc.contributor.authorSpaans, M.
dc.contributor.authorAresu, G.
dc.contributor.authorLee, Graham Kim Huat
dc.date.accessioned2015-11-24T15:40:06Z
dc.date.available2015-11-24T15:40:06Z
dc.date.issued2015-10
dc.identifier.citationAntonellini , S , Kamp , I , Riviere-Marichalar , P , Meijerink , R , Woitke , P , Thi , W-F , Spaans , M , Aresu , G & Lee , G K H 2015 , ' Understanding the water emission in the mid- and far-IR from protoplanetary disks around T Tauri stars ' , Astronomy & Astrophysics , vol. 582 , A105 . https://doi.org/10.1051/0004-6361/201525724en
dc.identifier.issn0004-6361
dc.identifier.otherPURE: 233986276
dc.identifier.otherPURE UUID: 5f9da08a-5001-4fef-ba55-dedf93816adc
dc.identifier.otherScopus: 84945545729
dc.identifier.otherWOS: 000363538500105
dc.identifier.urihttps://hdl.handle.net/10023/7841
dc.descriptionThe research leading to these results has received funding from the European Union Seventh Framework Programme FP7-2011 under grant agreement no 284405.en
dc.description.abstractAims. We investigate which properties of protoplanetary disks around T Tauri stars affect the physics and chemistry in the regions where mid- and far-IR water lines originate and their respective line fluxes. We search for diagnostics for future observations. Methods. With the code ProDiMo, we build a series of models exploring a large parameter space, computing rotational and ro-vibrational transitions of water in nonlocal thermodynamic equilibrium (non-LTE). We select a sample of transitions in the mid-IR regime and the fundamental ortho and para water transitions in the far-IR. We investigate the chemistry and the local physical conditions in the line emitting regions. We calculate Spitzer spectra for each model and compare far-IR and mid-IR lines. In addition, we use mid-IR colors to tie the water line predictions to the dust continuum. Results. Parameters affecting the water line fluxes in disks by more than a factor of three are: the disk gas mass, the dust-to-gas mass ratio, the dust maximum grain size, interstellar medium (ISM) UV radiation field, the mixing parameter of Dubrulle settling, the disk flaring parameter, and the dust size distribution. The first four parameters affect the mid-IR lines much more than the far-IR lines. Conclusions. A key driver behind water spectroscopy is the dust opacity, which sets the location of the water line emitting region. We identify three types of parameters, including those (1) affecting global disk opacity and opacity function (maximum dust size and dust size distribution); (2) affecting global disk opacity (dust-to-gas mass ratio, Dubrulle settling, disk gas mass); and (3) not affecting disk opacity (flaring parameter, ISM UV radiation field, fraction of PAHs). Parameters, such as dust-to-gas ratio, ISM radiation field, and dust size distribution, affect the mid-IR lines more, while the far-IR transitions are more affected by the flaring index. The gas mass greatly affects lines in both regimes. Higher spectral resolution and line sensitivities, like from the James Webb Space Telescope, are needed to detect a statistically relevant sample of individual water lines to distinguish further between these types of parameters.
dc.format.extent30
dc.language.isoeng
dc.relation.ispartofAstronomy & Astrophysicsen
dc.rights© ESO 2015. Reproduced with permission from Astronomy & Astrophysics, © ESO. This is the final published version of the work, which was originally published at http://dx.doi.org/10.1051/0004-6361/201525724en
dc.subjectProtoplanetary disksen
dc.subjectLine: formationen
dc.subjectStars: pre-main sequenceen
dc.subjectQC Physicsen
dc.subjectNDASen
dc.subject.lccQCen
dc.titleUnderstanding the water emission in the mid- and far-IR from protoplanetary disks around T Tauri starsen
dc.typeJournal articleen
dc.contributor.sponsorEuropean Commissionen
dc.description.versionPublisher PDFen
dc.contributor.institutionUniversity of St Andrews. School of Physics and Astronomyen
dc.identifier.doihttps://doi.org/10.1051/0004-6361/201525724
dc.description.statusPeer revieweden
dc.identifier.grantnumber284405en


This item appears in the following Collection(s)

Show simple item record