St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Wetting and interactions of Ag–Cu–Ti and Ag–Cu–Ni alloys with ceramic and steel substrates for use as sealing materials in a DCFC stack

Thumbnail
View/Open
Irvine_2015_JMS_Wetting_CC.pdf (2.455Mb)
Date
02/2016
Author
Triantafyllou, G.
Irvine, J. T. S.
Funder
European Commission
EPSRC
EPSRC
Grant ID
EP/K015540/1
EP/M014304/1
Keywords
Oxide fuel-cells
Gas-sensitive resistors
Mechanical-properties
Wettability
Zirconia
Metals
Dependence
Sapphire
System
QD Chemistry
DAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Ag and Ag-based pseudo-alloys were evaluated in terms of application as metal brazes for the use in a hybrid direct carbon fuel cell stack. This paper reports on a series of wetting experiments on systems of pure Ag as well as Ag–Cu–Ti and Ag–Cu–Ni pseudo-alloys in contact with the widely used austenitic stainless steel SS316L, the ferritic steels Crofer22APU and Croffer22H and with polycrystalline partially stabilized zirconia (TZ-3Y) for the determination of the interfacial properties of the above systems. Pure Ag in air showed poor wettability (θ >90°) with all substrates. The Ag–Cu–Ti pseudo-alloy in vacuum (P = 2.5 x 10-3 mbar) showed improved wettability, with θ = 40°. for the steels and θ =50°. for the TZ-3Y substrates. The Ag–Cu–Ni pseudo-alloy in air showed excellent wetting properties (θ <10°) with all the substrates, but its high liquidus temperature makes it unsuitable for use with the SS316L steel. In low vacuum (P = 1.5 x 10-1 mbar), the contact angle was increased (θ  = 65°) but the low oxygen concentration limits the oxidation of the steel surface. Selected systems of the pseudo-alloys in contact with steel and TZ-3Y substrates were treated for 120 h in the operating conditions of a hybrid direct carbon fuel cell, in order to evaluate the thermal stability of the joints. Despite the reactions taking place on the interface, the joints showed good stability and no separation of the two phases occurred.
Citation
Triantafyllou , G & Irvine , J T S 2016 , ' Wetting and interactions of Ag–Cu–Ti and Ag–Cu–Ni alloys with ceramic and steel substrates for use as sealing materials in a DCFC stack ' , Journal of Materials Science , vol. 51 , no. 4 , pp. 1766-1778 . https://doi.org/10.1007/s10853-015-9536-5
Publication
Journal of Materials Science
Status
Peer reviewed
DOI
https://doi.org/10.1007/s10853-015-9536-5
ISSN
0022-2461
Type
Journal article
Rights
© The Author(s) 2015. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
Description
The authors would like acknowledge the financial support received from the Engineering and Physical Sciences Research Council [EP/K015540/1] and the European Coal and Steel Community [RFCR-CT-2011-00004].
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/7831

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter