Show simple item record

Files in this item


Item metadata

dc.contributor.authorPulver, Stefan
dc.contributor.authorBayley, Timothy
dc.contributor.authorTaylor, Adam
dc.contributor.authorBerni, Jimena
dc.contributor.authorBate, Michael
dc.contributor.authorHedwig, Berthold
dc.identifier.citationPulver , S , Bayley , T , Taylor , A , Berni , J , Bate , M & Hedwig , B 2015 , ' Imaging fictive locomotor patterns in larval Drosophila ' , Journal of Neurophysiology , vol. 114 , no. 5 , pp. 2564-2577 .
dc.identifier.otherPURE: 217981340
dc.identifier.otherPURE UUID: 553ba0a1-4f59-441d-8400-2a2589e4ea0a
dc.identifier.otherScopus: 84946881938
dc.identifier.otherWOS: 000367436400005
dc.identifier.otherORCID: /0000-0001-5170-7522/work/69463437
dc.descriptionS.R.P. was supported by a Newton International Fellowship (Royal Society) and a Junior Fellowship (Janelia Research Campus, Howard Hughes Medical Institute). T.G.B. was supported by a Medical Research Council (UK) PhD grant. J.B. was supported by a Henry Dale Fellowship (Royal Society and Wellcome Trust). M.B. was supported by the Isaac Newton Trust.en
dc.description.abstractWe have established a preparation in larval Drosophila to monitor fictive locomotion simultaneously across abdominal and thoracic segments of the isolated CNS with genetically encoded Ca2+ indicators. The Ca2+ signals closely followed spiking activity measured electrophysiologically in nerve roots. Three motor patterns are analyzed. Two comprise waves of Ca2+ signals that progress along the longitudinal body axis in a posterior-to-anterior or anterior-to-posterior direction. These waves had statistically indistinguishable intersegmental phase delays compared with segmental contractions during forward and backward crawling behavior, despite being ∼10 times slower. During these waves, motor neurons of the dorsal longitudinal and transverse muscles were active in the same order as the muscle groups are recruited during crawling behavior. A third fictive motor pattern exhibits a left-right asymmetry across segments and bears similarities with turning behavior in intact larvae, occurring equally frequently and involving asymmetry in the same segments. Ablation of the segments in which forward and backward waves of Ca2+ signals were normally initiated did not eliminate production of Ca2+ waves. When the brain and subesophageal ganglion (SOG) were removed, the remaining ganglia retained the ability to produce both forward and backward waves of motor activity, although the speed and frequency of waves changed. Bilateral asymmetry of activity was reduced when the brain was removed and abolished when the SOG was removed. This work paves the way to studying the neural and genetic underpinnings of segmentally coordinated motor pattern generation in Drosophila with imaging techniques.
dc.relation.ispartofJournal of Neurophysiologyen
dc.rightsCopyright © 2015 the American Physiological Society. Licensed under Creative Commons Attribution CC-BY 3.0 ( © the American Physiological Society.en
dc.subjectCentral pattern generatoren
dc.subjectIntersegmental coordinationen
dc.subjectCalcium imagingen
dc.subjectRC0321 Neuroscience. Biological psychiatry. Neuropsychiatryen
dc.titleImaging fictive locomotor patterns in larval Drosophilaen
dc.typeJournal articleen
dc.contributor.sponsorThe Royal Societyen
dc.description.versionPublisher PDFen
dc.contributor.institutionUniversity of St Andrews. School of Psychology and Neuroscienceen
dc.description.statusPeer revieweden

This item appears in the following Collection(s)

Show simple item record