St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Observational signatures of waves and flows in the solar corona

Thumbnail
View/Open
wavesflows_editor.pdf (1.485Mb)
Date
02/2015
Author
De Moortel, I.
Antolin, Patrick
Van Doorsselaere, T.
Funder
European Commission
Science & Technology Facilities Council
Science & Technology Facilities Council
Grant ID
269299
ST/L005522/1
ST/K000950/1
Keywords
Flows
Magnetohydrodynamics (MHD)
Sun: corona
Waves
QA Mathematics
QC Physics
3rd-DAS
BDC
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Propagating perturbations have been observed in extended coronal loop structures for a number of years, but the interpretation in terms of slow (propagating) magneto-acoustic waves and/or as quasi-periodic upflows remains unresolved. We used forward-modelling to construct observational signatures associated with a simple slow magneto-acoustic wave or periodic flow model. Observational signatures were computed for the 171 Å Fe ix and the 193 Å Fe xii spectral lines. Although there are many differences between the flow and wave models, we did not find any clear, robust observational characteristics that can be used in isolation (i.e. that do not rely on a comparison between the models). For the waves model, a relatively rapid change of the average line widths as a function of (shallow) line-of-sight angles was found, whereas the ratio of the line width amplitudes to the Doppler velocity amplitudes is relatively high for the flow model. The most robust observational signature found is that the ratio of the mean to the amplitudes of the Doppler velocity is always higher than one for the flow model. This ratio is substantially higher for flows than for waves, and for the flows model used in the study is exactly the same in the 171 Å Fe ix and the 193 Å Fe xii spectral lines. However, these potential observational signatures need to be treated cautiously because they are likely to be model-dependent.
Citation
De Moortel , I , Antolin , P & Van Doorsselaere , T 2015 , ' Observational signatures of waves and flows in the solar corona ' , Solar Physics , vol. 290 , no. 2 , pp. 399-421 . https://doi.org/10.1007/s11207-014-0610-y
Publication
Solar Physics
Status
Peer reviewed
DOI
https://doi.org/10.1007/s11207-014-0610-y
ISSN
0038-0938
Type
Journal article
Rights
Copyright © 2015, Springer Science+Business Media Dordrecht. This work is made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at https://doi.org/10.1007/s11207-014-0610-y
Description
DM acknowledges support of a Royal Society University Research Fellowship and a KU Leuven Research Council senior research fellowship (SF/12/008). The research leading to these results has also received funding from the European Commission Seventh Framework Programme (FP7/2007-2013) under the grant agreement SOLSPANET (project No. 269299, www.solspanet.eu/solspanet ). TVD has been sponsored by an Odysseus grant of the FWO Vlaanderen. The research was performed in the context of the IAP P7/08 CHARM (Belspo) and the GOA-2015-014 (KU Leuven). TVD acknowledges the funding from the FP7 ERG grant with number 276808.
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/7722

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter