The University of St Andrews

Research@StAndrews:FullText >
Computer Science (School of) >
Computer Science >
Computer Science Theses >

Please use this identifier to cite or link to this item:
This item has been viewed 22 times in the last year. View Statistics

Files in This Item:

File Description SizeFormat
DavidHunterPhDThesis.pdf6.21 MBAdobe PDFView/Open
Title: Synthesis of facial ageing transforms using three-dimensional morphable models
Authors: Hunter, David W.
Supervisors: Tiddeman, Bernard
Keywords: Aging variation
Statistical face models
Morphable models
Face registration
Computer vision
Perceptual evaluation
Issue Date: 30-Nov-2009
Abstract: The ability to synthesise the effects of ageing in human faces has numerous uses from aiding the search for missing people to improving recognition algorithms and aiding surgical planning. The principal contribution of this thesis is a novel method for synthesising the visual effects of facial ageing using a training set of three-dimensional scans to train a statistical ageing model. This data-base is constructed by fitting a statistical Face Model known as a Morphable Model to a set of two dimensional photographs of a set of subjects at different age points in their lives. We verify the effectiveness of this algorithm with both quantitative and psychological evaluation. Most ageing research has concentrated on building models using two-dimensional images. This has two major shortcomings, firstly some of the information related to shape change may be lost by the projection to two-dimensions; secondly the algorithms are very sensitive to even slight variations in pose and lighting. By using standard face-fitting methods to fit a statistical face model to the image we overcome these problems by reconstructing the lost shape information, and can use a model of physical rotations and light transfer to overcome the issues of pose and rotation. We show that the three-dimensional models captured by face-fitting offer an effective method of synthesising facial ageing. The second contribution is a new algorithm for ageing a face model based on Projection to Latent Structures also known as Partial Least Squares. This method attempts to separate the training set into a set of basis vectors that best explains the shape and colour changes related to ageing from those factors within the training set that are unrelated to ageing. We show that this method is more accurate than other linear techniques at producing a face model that resembles the individual at the target age and of producing a face image of the correct perceived age. The third contribution is a careful evaluation of three well known ageing methods. We use both quantitative evaluation to determine the accuracy of the ageing method, and perceptual evaluation to determine how well the model performs in terms of perceived age increase and also identity retention. We show that linear methods more accurately capture ageing and identity information if they are trained using an individualised model, and that ageing is more accurately captured if PLS is used to train the model.
Other Identifiers:
Type: Thesis
Publisher: University of St Andrews
Appears in Collections:Computer Science Theses

This item is protected by original copyright

This item is licensed under a Creative Commons License
Creative Commons

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


DSpace Software Copyright © 2002-2012  Duraspace - Feedback
For help contact: | Copyright for this page belongs to St Andrews University Library | Terms and Conditions (Cookies)