St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • Mathematics & Statistics (School of)
  • Pure Mathematics
  • Pure Mathematics Theses
  • View Item
  •   St Andrews Research Repository
  • Mathematics & Statistics (School of)
  • Pure Mathematics
  • Pure Mathematics Theses
  • View Item
  •   St Andrews Research Repository
  • Mathematics & Statistics (School of)
  • Pure Mathematics
  • Pure Mathematics Theses
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

On generators, relations and D-simplicity of direct products, Byleen extensions, and other semigroup constructions

Thumbnail
View/Open
SamuelBaynesPhDThesis.pdf (701.6Kb)
Date
30/11/2015
Author
Baynes, Samuel
Supervisor
Ruškuc, Nik
Keywords
Semigroups
D-simple
Bisimple
Byleen extension
Relative rank
Embedding
Metadata
Show full item record
Altmetrics Handle Statistics
Abstract
In this thesis we study two different topics, both in the context of semigroup constructions. The first is the investigation of an embedding problem, specifically the problem of whether it is possible to embed any given finitely presentable semigroup into a D-simple finitely presentable semigroup. We consider some well-known semigroup constructions, investigating their properties to determine whether they might prove useful for finding a solution to our problem. We carry out a more detailed study into a more complicated semigroup construction, the Byleen extension, which has been used to solve several other embedding problems. We prove several results regarding the structure of this extension, finding necessary and sufficient conditions for an extension to be D-simple and a very strong necessary condition for an extension to be finitely presentable. The second topic covered in this thesis is relative rank, specifically the sequence obtained by taking the rank of incremental direct powers of a given semigroup modulo the diagonal subsemigroup. We investigate the relative rank sequences of infinite Cartesian products of groups and of semigroups. We characterise all semigroups for which the relative rank sequence of an infinite Cartesian product is finite, and show that if the sequence is finite then it is bounded above by a logarithmic function. We will find sufficient conditions for the relative rank sequence of an infinite Cartesian product to be logarithmic, and sufficient conditions for it to be constant. Chapter 4 ends with the introduction of a new topic, relative presentability, which follows naturally from the topic of relative rank.
Type
Thesis, PhD Doctor of Philosophy
Collections
  • Pure Mathematics Theses
URI
http://hdl.handle.net/10023/7629

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter