St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Fossil group origins V. the dependence of the luminosity function on the magnitude gap

Thumbnail
View/Open
Abreu_2015_A_A_Fossil.pdf (513.2Kb)
Date
09/2015
Author
Zarattini, S.
Aguerri, J.A.L.
Sánchez-Janssen, R.
Barrena, R.
Boschin, W.
Del Burgo, C.
Castro-Rodriguez, N.
Corsini, E.M.
D'Onghia, E.
Girardi, M.
Iglesias-Páramo, J.
Kundert, A.
Mendez Abreu, Jairo
Vilchez, J.M.
Funder
European Research Council
Grant ID
ERC-2012-StG-20111012
Keywords
Galaxies: clusters: general
Galaxies: groups: general
Galaxies: luminosity function, mass function
QC Physics
QB Astronomy
3rd-DAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Context. In nature we observe galaxy aggregations that span a wide range of magnitude gaps between the two first-ranked galaxies of a system (Δm12). Thus, there are systems with gaps close to zero (e.g., the Coma cluster), and at the other extreme of the distribution, the largest gaps are found among the so-called fossil systems. The observed distribution of magnitude gaps is thought to be a consequence of the orbital decay of M∗ galaxies in massive halos and the associated growth of the central object. As a result, to first order the amplitude of this gap is a good statistical proxy for the dynamical age of a system of galaxies. Fossil and non-fossil systems could therefore have different galaxy populations that should be reflected in their luminosity functions. Aims. In this work we study, for the first time, the dependence of the luminosity function parameters on Δm12 using data obtained by the fossil group origins (FOGO) project. Methods. We constructed a hybrid luminosity function for 102 groups and clusters at z ≤ 0.25 using both photometric data from the SDSS-DR7 and redshifts from the DR7 and the FOGO surveys. The latter consists of ~1200 new redshifts in 34 fossil system candidates. We stacked all the individual luminosity functions, dividing them into bins of Δm12, and studied their best-fit Schechter parameters. We additionally computed a “relative” luminosity function, expressed as a function of the central galaxy luminosity, which boosts our capacity to detect differences – especially at the bright end. Results. We find trends as a function of Δm12 at both the bright and faint ends of the luminosity function. In particular, at the bright end, the larger the magnitude gap, the fainter the characteristic magnitude M∗. The characteristic luminosity in systems with negligible gaps is more than a factor three brighter than in fossil-like ones. Remarkably, we also find differences at the faint end. In this region, the larger the gap, the flatter the faint-end slope α. Conclusions. The differences found at the bright end support a dissipationless, dynamical friction-driven merging model for the growth of the central galaxy in group- and cluster-sized halos. The differences in the faint end cannot be explained by this mechanism. Other processes – such as enhanced tidal disruption due to early infall and/or prevalence of eccentric orbits – may play a role. However, a larger sample of systems with Δm12> 1.5 is needed to establish the differences at the faint end.
Citation
Zarattini , S , Aguerri , J A L , Sánchez-Janssen , R , Barrena , R , Boschin , W , Del Burgo , C , Castro-Rodriguez , N , Corsini , E M , D'Onghia , E , Girardi , M , Iglesias-Páramo , J , Kundert , A , Mendez Abreu , J & Vilchez , J M 2015 , ' Fossil group origins V. the dependence of the luminosity function on the magnitude gap ' , Astronomy & Astrophysics , vol. 581 , A16 . https://doi.org/10.1051/0004-6361/201425506
Publication
Astronomy & Astrophysics
Status
Peer reviewed
DOI
https://doi.org/10.1051/0004-6361/201425506
ISSN
0004-6361
Type
Journal article
Rights
Copyright ESO 2015. Reproduced with permission from Astronomy & Astrophysics, © ESO. This work is made available online in accordance with the publisher’s policies. This is the final published version of the work, which was originally published at http://dx.doi.org/10.1051/0004-6361/201425506
Description
This work has been partially funded by the MINECO (grant AIA2013-43188-P). E.M.C. acknowledges financial support from Padua University by the grants 60A02-4807/12, 60A02-5857/13, 60A02-5833/14, and CPDA133894. M.G. acknowledges financial support from MIUR PRIN2010-2011. J.M.A. acknowledges support from the European Research Council Starting Grant (SEDmorph; P.I. V. Wild). E.D. gratefully acknowledges the support of the Alfred P. Sloan Foundation. E.D. and A.K. are supported by NASA Grant No NNX13AE97G. J.I.P. and J.M.V. acknowledge financial support from the Spanish MINECO under grant AYA2010-21887-C04-01 and from Junta de Andalucía Excellence Project PEX2011-FQM7058.
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/7613

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter