St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • Computer Science (School of)
  • Computer Science
  • Computer Science Theses
  • View Item
  •   St Andrews Research Repository
  • Computer Science (School of)
  • Computer Science
  • Computer Science Theses
  • View Item
  •   St Andrews Research Repository
  • Computer Science (School of)
  • Computer Science
  • Computer Science Theses
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Consistency and the quantified constraint satisfaction problem

Thumbnail
View/Open
Peter Nightingale PhD thesis.pdf (1.693Mb)
Date
30/11/2007
Author
Nightingale, Peter
Supervisor
Gent, Ian P.
Keywords
Constraint programming
Artificial intelligence
Quantifiers
QCSP
Metadata
Show full item record
Altmetrics Handle Statistics
Abstract
Constraint satisfaction is a very well studied and fundamental artificial intelligence technique. Various forms of knowledge can be represented with constraints, and reasoning techniques from disparate fields can be encapsulated within constraint reasoning algorithms. However, problems involving uncertainty, or which have an adversarial nature (for example, games), are difficult to express and solve in the classical constraint satisfaction problem. This thesis is concerned with an extension to the classical problem: the Quantified Constraint Satisfaction Problem (QCSP). QCSP has recently attracted interest. In QCSP, quantifiers are allowed, facilitating the expression of uncertainty. I examine whether QCSP is a useful formalism. This divides into two questions: whether QCSP can be solved efficiently; and whether realistic problems can be represented in QCSP. In attempting to answer these questions, the main contributions of this thesis are the following: - the definition of two new notions of consistency; - four new constraint propagation algorithms (with eight variants in total), along with empirical evaluations; - two novel schemes to implement the pure value rule, which is able to simplify QCSP instances; - a new optimization algorithm for QCSP; - the integration of these algorithms and techniques into a solver named Queso; - and the modelling of the Connect 4 game, and of faulty job shop scheduling, in QCSP. These are set in context by a thorough review of the QCSP literature.
Type
Thesis
Collections
  • Computer Science Theses
URI
http://hdl.handle.net/10023/759

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter