Show simple item record

Files in this item


Item metadata

dc.contributor.authorRussell, A. J. B.
dc.contributor.authorYeates, A. R.
dc.contributor.authorHornig, G.
dc.contributor.authorWilmot-Smith, A. L.
dc.identifier.citationRussell , A J B , Yeates , A R , Hornig , G & Wilmot-Smith , A L 2015 , ' Evolution of field line helicity during magnetic reconnection ' , Physics of Plasmas , vol. 22 , no. 3 , 032106 .
dc.identifier.otherORCID: /0000-0001-5690-2351/work/139965416
dc.descriptionThis work was supported by the Science and Technology Facilities Council (UK) through consortium Grant Nos. ST/K000993/1 and ST/K001043 to the University of Dundee and Durham University.en
dc.description.abstractWe investigate the evolution of field line helicity for magnetic fields that connect two boundaries without null points, with emphasis on localized finite-B magnetic reconnection. Total ( relative) magnetic helicity is already recognized as an important topological constraint on magnetohydrodynamic processes. Field line helicity offers further advantages because it preserves all topological information and can distinguish between different magnetic fields with the same total helicity. Magnetic reconnection changes field connectivity and field line helicity reflects these changes; the goal of this paper is to characterize that evolution. We start by deriving the evolution equation for field line helicity and examining its terms, also obtaining a simplified form for cases where dynamics are localized within the domain. The main result, which we support using kinematic examples, is that during localized reconnection in a complex magnetic field, the evolution of field line helicity is dominated by a work-like term that is evaluated at the field line endpoints, namely, the scalar product of the generalized field line velocity and the vector potential. Furthermore, the flux integral of this term over certain areas is very small compared to the integral of the unsigned quantity, which indicates that changes of field line helicity happen in a well-organized pairwise manner. It follows that reconnection is very efficient at redistributing helicity in complex magnetic fields despite having little effect on the total helicity.
dc.relation.ispartofPhysics of Plasmasen
dc.subjectParallel electric-fieldsen
dc.subjectEnergy principleen
dc.subjectSolar atmosphereen
dc.subjectFlux tubesen
dc.subjectQC Physicsen
dc.titleEvolution of field line helicity during magnetic reconnectionen
dc.typeJournal articleen
dc.contributor.institutionUniversity of St Andrews. Applied Mathematicsen
dc.description.statusPeer revieweden

This item appears in the following Collection(s)

Show simple item record