Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorWang, J.
dc.contributor.authorSantamato, A.
dc.contributor.authorJiang, P.
dc.contributor.authorBonneau, D.
dc.contributor.authorEngin, E.
dc.contributor.authorSilverstone, J.W.
dc.contributor.authorLermer, M.
dc.contributor.authorBeetz, J.
dc.contributor.authorKamp, M.
dc.contributor.authorHöfling, S.
dc.contributor.authorTanner, M.G.
dc.contributor.authorNatarajan, C.M.
dc.contributor.authorHadfield, R.H.
dc.contributor.authorDorenbos, S.N.
dc.contributor.authorZwiller, V.
dc.contributor.authorO'Brien, J.L.
dc.contributor.authorThompson, M.G.
dc.date.accessioned2015-09-14T23:10:45Z
dc.date.available2015-09-14T23:10:45Z
dc.date.issued2014-09-15
dc.identifier134476120
dc.identifier5a18bbb2-501d-4d33-b6d9-df8e03074f99
dc.identifier84901950834
dc.identifier000336969700010
dc.identifier.citationWang , J , Santamato , A , Jiang , P , Bonneau , D , Engin , E , Silverstone , J W , Lermer , M , Beetz , J , Kamp , M , Höfling , S , Tanner , M G , Natarajan , C M , Hadfield , R H , Dorenbos , S N , Zwiller , V , O'Brien , J L & Thompson , M G 2014 , ' Gallium arsenide (GaAs) quantum photonic waveguide circuits ' , Optics Communications , vol. 327 , pp. 49-55 . https://doi.org/10.1016/j.optcom.2014.02.040en
dc.identifier.issn0030-4018
dc.identifier.urihttps://hdl.handle.net/10023/7460
dc.descriptionThis work was supported by the European FP7 project Quantum Integrated Photonics (QUANTIP), the Engineering and Physical Sciences Research Council (EPSRC), the European Research Council (ERC)en
dc.description.abstractIntegrated quantum photonics is a promising approach for future practical and large-scale quantum information processing technologies, with the prospect of on-chip generation, manipulation and measurement of complex quantum states of light. The gallium arsenide (GaAs) material system is a promising technology platform, and has already successfully demonstrated key components including waveguide integrated single-photon sources and integrated single-photon detectors. However, quantum circuits capable of manipulating quantum states of light have so far not been investigated in this material system. Here, we report GaAs photonic circuits for the manipulation of single-photon and two-photon states. Two-photon quantum interference with a visibility of 94.9±1.3% was observed in GaAs directional couplers. Classical and quantum interference fringes with visibilities of 98.6±1.3% and 84.4±1.5% respectively were demonstrated in Mach-Zehnder interferometers exploiting the electro-optic Pockels effect. This work paves the way for a fully integrated quantum technology platform based on the GaAs material system.
dc.format.extent7
dc.format.extent1109076
dc.language.isoeng
dc.relation.ispartofOptics Communicationsen
dc.subjectQuantum opticsen
dc.subjectIntegrated quantum photonicsen
dc.subjectQuantum interferenceen
dc.subjectEntanglementen
dc.subjectGaAs waveguideen
dc.subjectPockels effecten
dc.subjectQC Physicsen
dc.subject.lccQCen
dc.titleGallium arsenide (GaAs) quantum photonic waveguide circuitsen
dc.typeJournal articleen
dc.contributor.institutionUniversity of St Andrews. School of Physics and Astronomyen
dc.contributor.institutionUniversity of St Andrews. Condensed Matter Physicsen
dc.identifier.doi10.1016/j.optcom.2014.02.040
dc.description.statusPeer revieweden
dc.date.embargoedUntil2015-09-15


This item appears in the following Collection(s)

Show simple item record