St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Triggering extreme events at the nanoscale in photonic seas

Thumbnail
View/Open
Liu_NatPhys_Pure.pdf (4.181Mb)
Date
04/2015
Author
Liu, C.
van der Wel, R. E. C.
Rotenberg, N.
Kuipers, L.
Krauss, Thomas Fraser
Di Falco, Andrea
Fratalocchi, A.
Funder
EPSRC
EPSRC
EPSRC
Grant ID
EP/I004602/1
EP/J01771X/1
EP/J004200/1
Keywords
QC Physics
NDAS
BDC
R2C
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Hurricanes, tsunamis, rogue waves and tornadoes are rare natural phenomena that embed an exceptionally large amount of energy, which appears and quickly disappears in a probabilistic fashion. This makes them difficult to predict and hard to generate on demand. Here we demonstrate that we can trigger the onset of rare events akin to rogue waves controllably, and systematically use their generation to break the diffraction limit of light propagation. We illustrate this phenomenon in the case of a random field, where energy oscillates among incoherent degrees of freedom. Despite the low energy carried by each wave, we illustrate how to control a mechanism of spontaneous synchronization, which constructively builds up the spectral energy available in the whole bandwidth of the field into giant structures, whose statistics is predictable. The larger the frequency bandwidth of the random field, the larger the amplitude of rare events that are built up by this mechanism. Our system is composed of an integrated optical resonator, realized on a photonic crystal chip. Through near-field imaging experiments, we record confined rogue waves characterized by a spatial localization of 206 nm and with an ultrashort duration of 163 fs at a wavelength of 1.55 μm. Such localized energy patterns are formed in a deterministic dielectric structure that does not require nonlinear properties.
Citation
Liu , C , van der Wel , R E C , Rotenberg , N , Kuipers , L , Krauss , T F , Di Falco , A & Fratalocchi , A 2015 , ' Triggering extreme events at the nanoscale in photonic seas ' , Nature Physics , vol. 11 , no. 4 , pp. 358-363 . https://doi.org/10.1038/nphys3263
Publication
Nature Physics
Status
Peer reviewed
DOI
https://doi.org/10.1038/nphys3263
ISSN
1745-2473
Type
Journal article
Rights
Copyright 2015 The Authors. Subject to terms of reuse of archived manuscripts http://www.nature.com/authors/policies/license.html
Description
This work is supported by Kaust (Award No. CRG-1-2012-FRA-005), by NanoNextNL of the Dutch ministry EL&I and 130 partners and by the EU FET project ‘SPANGL4Q’.
Collections
  • University of St Andrews Research
URL
https://www.nature.com/articles/nphys3263#Sec6
URI
http://hdl.handle.net/10023/7422

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter