St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

The impact of the streamflow hydrograph on sediment supply from terrace erosion

Thumbnail
View/Open
Higson_2015_Geo_Impact_CC.pdf (2.324Mb)
Date
01/11/2015
Author
Higson, John Lee
Singer, Michael Bliss
Keywords
Bank stability
Hyporheic
Legacy sediment
Yuba River
Gold Rush
Mercury contamination
GB Physical geography
QE Geology
NDAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Sediment supply from banks and terraces has important implications for grain-size distributions in alluvial rivers (and by extension for aquatic habitat), as well as for the delivery of floodplain-stored nutrients and contaminants to the aquatic environment. The interactions between streamflow hydrographs and lateral channel boundary failure control the sediment supply from banks and terraces. However, the relationships between variable flow and discrete sediment supply from catastrophic erosion of lateral boundaries and subsequent mass sediment flux in rivers are not well characterised by existing methods and models that focus only on one of several relevant interrelated processes. In order to improve predictive capability of catastrophic sediment supply from lateral boundaries, we adopt a new approach to modelling the process interactions between stream hydrology, erosion of banks/terraces, and the corresponding discrete supply of sediment to channels. We develop a modelling framework for terrace –-channel coupling that combines existing theories of flow through porous media, bank stability, and fractional sediment flux. We demonstrate the utility of this modelling approach by assessing hydrologically driven erosion, evolution of grain size in the channel, and fine sediment flux from a study site along the Yuba River in California over individual flood hydrographs and over decadal historical flow series. We quantify the supply of sediment eroded from a contaminated nineteenth century fan terrace of hydraulic gold mining tailingsintersecting the Yuba and find that a threshold for erosion exists at a stage in the channel in excess of 8 m and that threshold can produce episodic sediment concentrations in excess of ~ 300 mg L− 1. The modelling produced erosion and fine sediment pulses from each of three major floods in the past several decades until the flow velocity drops below 500 m s− 1 when a bed armor layer forms, while no sediment was generated from the terrace during smaller floods. We further assess the impact on terrace erosion of various river management scenarios with distinct hydrograph shapes and find increased erosion potential when the terrace contains antecedent moisture or the flood time series is run over an extended duration. Sensitivity analysis demonstrated that elevated antecedent moisture within the lateral boundary and increased hydrograph rising time each reduce bank stability and thus increase volumes of failed material. We also find that fluctuations in the hydrograph typically associated with hydroelectricity generation result in a more stable terrace than those of a longer duration because there is less time for hyporheic stream water to infiltrate the lateral boundary. This study demonstrates that changes in hydrograph shape as a consequence of climatic forcing or anthropogenic dam releases may have considerable impacts upon sediment delivery and associated contaminants from banks and terraces to the downstream environment.
Citation
Higson , J L & Singer , M B 2015 , ' The impact of the streamflow hydrograph on sediment supply from terrace erosion ' , Geomorphology , vol. 248 , pp. 475-488 . https://doi.org/10.1016/j.geomorph.2015.07.037
Publication
Geomorphology
Status
Peer reviewed
DOI
https://doi.org/10.1016/j.geomorph.2015.07.037
ISSN
0169-555X
Type
Journal article
Rights
© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Description
This work was funded in part by the Natural Environment Research Council in the form of a PhD studentship to Higson and by a U.S. National Science Foundation grant to Singer (EAR-1226741).
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/7416

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter