Files in this item
Boron isotope evidence for oceanic carbon dioxide leakage during the last deglaciation
Item metadata
dc.contributor.author | Martínez-Botí, M A | |
dc.contributor.author | Marino, G | |
dc.contributor.author | Foster, G L | |
dc.contributor.author | Ziveri, P | |
dc.contributor.author | Henehan, M J | |
dc.contributor.author | Rae, J W B | |
dc.contributor.author | Mortyn, P G | |
dc.contributor.author | Vance, D | |
dc.date.accessioned | 2015-08-10T23:10:45Z | |
dc.date.available | 2015-08-10T23:10:45Z | |
dc.date.issued | 2015-02-12 | |
dc.identifier.citation | Martínez-Botí , M A , Marino , G , Foster , G L , Ziveri , P , Henehan , M J , Rae , J W B , Mortyn , P G & Vance , D 2015 , ' Boron isotope evidence for oceanic carbon dioxide leakage during the last deglaciation ' , Nature , vol. 518 , no. 7538 , pp. 219-22 . https://doi.org/10.1038/nature14155 | en |
dc.identifier.issn | 0028-0836 | |
dc.identifier.other | PURE: 169143724 | |
dc.identifier.other | PURE UUID: 7416e887-614e-43a0-ba3c-b04c2bb82af1 | |
dc.identifier.other | PubMed: 25673416 | |
dc.identifier.other | Scopus: 84923083961 | |
dc.identifier.other | WOS: 000349190300035 | |
dc.identifier.other | ORCID: /0000-0003-3904-2526/work/60196321 | |
dc.identifier.uri | http://hdl.handle.net/10023/7180 | |
dc.description | Financial support was provided by the European Community through a Marie Curie Intra-European Fellowship for Career Development to M.A.M.-B., the Universitat Autònoma de Barcelona through a Postdoctoral Research Grant to G.M., the Spanish Ministry of Science and Innovation (PROCARSO project CGL2009-10806) to G.M., P.Z. and P.G.M., a NERC PhD studentship awarded to M.J.H., a NOAA/UCAR Climate and Global Change Postdoctoral Fellowship to J.W.B.R., and NERC grant NE/D00876/X2 to G.L.F. G.M. was also supported by the Australian Laureate Fellowship project FL120100050 (E. J. Rohling). | en |
dc.description.abstract | Atmospheric CO2 fluctuations over glacial-interglacial cycles remain a major challenge to our understanding of the carbon cycle and the climate system. Leading hypotheses put forward to explain glacial-interglacial atmospheric CO2 variations invoke changes in deep-ocean carbon storage, probably modulated by processes in the Southern Ocean, where much of the deep ocean is ventilated. A central aspect of such models is that, during deglaciations, an isolated glacial deep-ocean carbon reservoir is reconnected with the atmosphere, driving the atmospheric CO2 rise observed in ice-core records. However, direct documentation of changes in surface ocean carbon content and the associated transfer of carbon to the atmosphere during deglaciations has been hindered by the lack of proxy reconstructions that unambiguously reflect the oceanic carbonate system. Radiocarbon activity tracks changes in ocean ventilation, but not in ocean carbon content, whereas proxies that record increased deglacial upwelling do not constrain the proportion of upwelled carbon that is degassed relative to that which is taken up by the biological pump. Here we apply the boron isotope pH proxy in planktic foraminifera to two sediment cores from the sub-Antarctic Atlantic and the eastern equatorial Pacific as a more direct tracer of oceanic CO2 outgassing. We show that surface waters at both locations, which partly derive from deep water upwelled in the Southern Ocean, became a significant source of carbon to the atmosphere during the last deglaciation, when the concentration of atmospheric CO2 was increasing. This oceanic CO2 outgassing supports the view that the ventilation of a deep-ocean carbon reservoir in the Southern Ocean had a key role in the deglacial CO2 rise, although our results allow for the possibility that processes operating in other regions may also have been important for the glacial-interglacial ocean-atmosphere exchange of carbon. | |
dc.format.extent | 4 | |
dc.language.iso | eng | |
dc.relation.ispartof | Nature | en |
dc.rights | Copyright 2014 the Authors. This work is made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at: https://dx.doi.org/10.1038/nature14155 | en |
dc.subject | GB Physical geography | en |
dc.subject | GE Environmental Sciences | en |
dc.subject | NDAS | en |
dc.subject | BDC | en |
dc.subject | R2C | en |
dc.subject | SDG 13 - Climate Action | en |
dc.subject.lcc | GB | en |
dc.subject.lcc | GE | en |
dc.title | Boron isotope evidence for oceanic carbon dioxide leakage during the last deglaciation | en |
dc.type | Journal article | en |
dc.description.version | Postprint | en |
dc.contributor.institution | University of St Andrews. School of Earth & Environmental Sciences | en |
dc.contributor.institution | University of St Andrews. St Andrews Isotope Geochemistry | en |
dc.contributor.institution | University of St Andrews. Earth and Environmental Sciences | en |
dc.identifier.doi | https://doi.org/10.1038/nature14155 | |
dc.description.status | Peer reviewed | en |
dc.date.embargoedUntil | 2015-08-11 |
This item appears in the following Collection(s)
Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.