St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • Chemistry (School of)
  • Chemistry
  • Chemistry Theses
  • View Item
  •   St Andrews Research Repository
  • Chemistry (School of)
  • Chemistry
  • Chemistry Theses
  • View Item
  •   St Andrews Research Repository
  • Chemistry (School of)
  • Chemistry
  • Chemistry Theses
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Mutagenicity of 5-bromouracil : quantum chemical study

Thumbnail
View/Open
LeoHolroydPhDThesis.pdf (4.735Mb)
Date
30/11/2015
Author
Holroyd, Leo
Supervisor
van Mourik, Tanja
Funder
Engineering and Physical Sciences Research Council (EPSRC)
Keywords
5-bromouracil
Point mutations
Keto-enol tautomerism
Rare tautomer hypothesis
Wobble pair
Base stacking
Density functional theory
Coupled cluster
CPMD
Metadata
Show full item record
Altmetrics Handle Statistics
Abstract
This thesis describes a computational investigation of the mutagenicity of 5-bromouracil (BrU). In Chapter 1, three models of spontaneous and BrU-induced base mispairing (rare tautomer, wobble pair, and ion) are reviewed. Chapter 2 presents the computational techniques used: electronic structure methods (Hartree–Fock-based and density functional theory) and molecular dynamics. Chapter 3 presents optimisations of the keto and enol tautomers of BrU and uracil (U) in water clusters. The enol tautomer of BrU is found to be more stable than that of U. Chapter 4 is a molecular dynamics study of the keto-enol tautomerism of BrU and U in a periodic water box. The pKₐ of BrU at N3 is found to be lower than that of U. Chapter 5 is a study of stacked base dimers containing BrU, U, or thymine (T) stacking with natural bases. Some structures were taken from the Protein Data Bank, while others were generated using an in-house methodology. BrU is found to stack more strongly than T in vacuo, but solvation and thermal effects nullify this difference. Chapter 6 discusses the significance of the results in Chapters 3–5 in terms of BrU-induced mutagenesis. Appendices A and B–D provide supplementary material to Chapters 2 and 5, respectively. Appendix E is an investigation of the “base flipping” pathway of 2-aminopurine (2AP). Both 2AP/N and A/N dinucleosides (N = thymine or guanine) are found to adopt a wide range of energy-minimum conformations – not only stacked and “flipped”, but also intermediate – and the stacked are not the most favourable by free energy. Appendix F is a list of publications and papers in preparation. One publication concerns BrU stacking. The other is a conformational study of the dipeptide tyrosine-glycine: the theoretical results are shown to be consistent with experiment (R2PI spectra) if thermal effects are taken into account.
Type
Thesis, PhD Doctor of Philosophy
Collections
  • Chemistry Theses
URI
http://hdl.handle.net/10023/7063

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter