St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • Earth & Environmental Sciences and Geography & Sustainable Development (Schools of)
  • Geography & Geosciences (Previous name for currents schools of Earth & Environmental Sciences and ...)
  • Geography & Geosciences Theses
  • View Item
  •   St Andrews Research Repository
  • Earth & Environmental Sciences and Geography & Sustainable Development (Schools of)
  • Geography & Geosciences (Previous name for currents schools of Earth & Environmental Sciences and ...)
  • Geography & Geosciences Theses
  • View Item
  •   St Andrews Research Repository
  • Earth & Environmental Sciences and Geography & Sustainable Development (Schools of)
  • Geography & Geosciences (Previous name for currents schools of Earth & Environmental Sciences and ...)
  • Geography & Geosciences Theses
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

An extension of geographically weighted regression with flexible bandwidths

Thumbnail
View/Open
WenbaiYangPhDThesis.pdf (3.906Mb)
Date
2014
Author
Yang, Wenbai
Supervisor
Fotheringham, A. Stewart
Funder
Science Foundation Ireland (SFI)
Metadata
Show full item record
Altmetrics Handle Statistics
Abstract
Various statistical methods have been developed for local spatial analysis. Among them Geographically Weighted Regression (GWR) is a simple yet powerful method to explore spatially varying relationships between variables. This thesis examines how GWR can be extended to investigate spatially varying relationships at various geographical scales within one model. GWR assumes that observations near to a regression location have more influence on the estimation of local regression coefficients than do observations farther away. A single bandwidth is employed in basic GWR to control the rate of distance-decay in this influence. The magnitude of the bandwidth affects the scale of variation in the estimated regression coefficients and thus usefully reflects the appropriate spatial scale at which the processes being modelled operate. A small bandwidth suggests the processes operate over a local spatial scale, whilst a large bandwidth indicates a more regional process. In practice, a single bandwidth as in basic GWR may not be sufficient to reflect the potentially complex spatial variations in relationships between variables in a multivariate spatial model. Therefore, in order to estimate coefficient surfaces that may vary at different spatial scales for different variables, Flexible Bandwidth GWR (FBGWR) is proposed to allow different bandwidths to be individually specified for each independent variable in a regression framework. An algorithm based on back- fitting is developed to calibrate the FBGWR model. The performance of FBGWR is investigated with simulated datasets where coefficients are predefined at various levels of non-stationarity across space. A case study is then carried out on data relating to the Irish Famine to demonstrate the application of FBGWR to real-world processes. The results suggest that FBGWR can distinguish various scales of non-stationarity in spatial processes and provide an improved model over basic GWR. FBGWR therefore represents a useful development in the modelling of spatially varying processes.
Type
Thesis, PhD Doctor of Philosophy
Collections
  • Geography & Geosciences Theses
URI
http://hdl.handle.net/10023/7052

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter