St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • Chemistry (School of)
  • Chemistry
  • Chemistry Theses
  • View Item
  •   St Andrews Research Repository
  • Chemistry (School of)
  • Chemistry
  • Chemistry Theses
  • View Item
  •   St Andrews Research Repository
  • Chemistry (School of)
  • Chemistry
  • Chemistry Theses
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

The location of active sites in microporous solids

Date
2014
Author
Eschenröder, Eike Christian Viktor
Supervisor
Wright, Paul Anthony
Metadata
Show full item record
Altmetrics Handle Statistics
Abstract
The location of heteroatoms within porous materials was examined in chosen zeolite and zeotype materials. For zeolites, the substitution of aluminium (mainly, but also gallium and boron) for silicon was examined in materials with the AFX and EUO topology types. For the zeotypes, magnesium and zinc substitution for aluminium was studied in MAPO STA-2 (SAT framework) as well attempts to include silicon into the material. In addition to the investigation of heteroatoms within the framework, the role of templating has been explored in (Cu-)SAPO STA-7 and phosphonium cation templated materials, where calcination leaves extra-framework Cu²⁺ cations and phosphorus species, respectively. Solid-state NMR spectroscopy, X-ray diffraction (single-crystal and powder) and IR spectroscopy were used for the characterisation of these structures. For MAPO and ZnAPO STA-2, the location of the heteroatoms in the framework was confirmed and their role in charge balancing established. Additionally, for MgAPO STA-2, the NMR indicates preferential substitution of Mg in one of the two crystallographically distinct Al sites. The zeolite SSZ-16 (AFX structure type, which like SAT has two topologically-distinct Al sites) was synthesised with two closely related diquaternary templates The synthesis was optimised with respect to purity, crystallisation conditions, and time, giving a range of materials with different Si/Al contents. Based on ²⁷Al and ¹¹B MAS NMR, it was not possible to resolve between the two crystallographic sites. Full details are given of the crystallisation using these organic structure directing agents. Other templated materials crystallised included mordenite, EU-1, L and offretite. For the more complex and higher Si/Al EUO materials (10 crystallographically-distinct tetrahedral sites), it was attempted to locate heteroatom positions in the isostructural EU-1 and ZSM-50, which are prepared with hexamethonium and dibenzyldimethyl ammonium cations, respectively. These zeolites show considerable charge-balancing of the charged template by framework defects over the Si/Al range. These defects can be healed by post-synthetic treatment with aqueous NH₄F solutions. In all samples examined, the ²⁷Al MAS NMR shows significant differences between the EU-1 and ZSM-50 materials, which is attributed to the role of the different charge distribution of the templates. With focus on extra-framework species, the calcination and subsequent dispersion of Cu²⁺ cations throughout the pore space of Cu-SAPO STA-7 was examined by Synchrotron IR spectroscopy of microcrystals at the Diamond Light Source. Applying polarised IR radiation, direction-dependent information was extracted. Combining IR spectroscopic data with complementary techniques such as EPR spectroscopy, X-ray diffraction and computational modelling, the dehydration state of the templating Cu-cyclam complex and the change in orientation of the complex was determined based on the characteristic N-H stretching vibration. Additionally, a range of commercially-available and custom-made phenylphosphonium- based organics have been examined as templates for MAPO based materials. A layered phase based on tetraphenylphosphonium and methyltriphenylphosphonium cations was synthesised and the structure was confirmed by Rietveld refinement on powder X-ray diffraction data. For diphenylphosphonium templates, framework MAPOs have successfully been prepared, including those with the ATS topology type (MAPO-36). The phosphonium-based templates were removed by calcination, leaving phosphate species in the pores behind according to solid-state NMR.
Type
Thesis, PhD Doctor of Philosophy
Rights
Embargo Date: 2019-01-11
Embargo Reason: Thesis restricted in accordance with University regulations. Print and electronic copy restricted until 11th January 2019
Collections
  • Chemistry Theses
URI
http://hdl.handle.net/10023/7042

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter