St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • Chemistry (School of)
  • Chemistry
  • Chemistry Theses
  • View Item
  •   St Andrews Research Repository
  • Chemistry (School of)
  • Chemistry
  • Chemistry Theses
  • View Item
  •   St Andrews Research Repository
  • Chemistry (School of)
  • Chemistry
  • Chemistry Theses
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Quantitative and evolutionary global analysis of enzyme reaction mechanisms

Thumbnail
View/Open
NeetikaNathPhDThesis.pdf (5.582Mb)
NeetikaNath_Supplementary files.zip (84.62Mb)
Date
24/06/2015
Author
Nath, Neetika
Supervisor
Mitchell, John B. O.
Funder
Scottish Universities Life Sciences Alliance (SULSA)
Scottish Overseas Research Student Awards Scheme (SORSAS)
Keywords
Enzyme
Machine learning
EC number
Enzyme evolution
PFClust
Clustering analysis
R
Statistics
Metadata
Show full item record
Altmetrics Handle Statistics
Abstract
The most widely used classification system describing enzyme-catalysed reactions is the Enzyme Commission (EC) number. Understanding enzyme function is important for both fundamental scientific and pharmaceutical reasons. The EC classification is essentially unrelated to the reaction mechanism. In this work we address two important questions related to enzyme function diversity. First, to investigate the relationship between the reaction mechanisms as described in the MACiE (Mechanism, Annotation, and Classification in Enzymes) database and the main top-level class of the EC classification. Second, how well these enzymes biocatalysis are adapted in nature. In this thesis, we have retrieved 335 enzyme reactions from the MACiE database. We consider two ways of encoding the reaction mechanism in descriptors, and three approaches that encode only the overall chemical reaction. To proceed through my work, we first develop a basic model to cluster the enzymatic reactions. Global study of enzyme reaction mechanism may provide important insights for better understanding of the diversity of chemical reactions of enzymes. Clustering analysis in such research is very common practice. Clustering algorithms suffer from various issues, such as requiring determination of the input parameters and stopping criteria, and very often a need to specify the number of clusters in advance. Using several well known metrics, we tried to optimize the clustering outputs for each of the algorithms, with equivocal results that suggested the existence of between two and over a hundred clusters. This motivated us to design and implement our algorithm, PFClust (Parameter-Free Clustering), where no prior information is required to determine the number of cluster. The analysis highlights the structure of the enzyme overall and mechanistic reaction. This suggests that mechanistic similarity can influence approaches for function prediction and automatic annotation of newly discovered protein and gene sequences. We then develop and evaluate the method for enzyme function prediction using machine learning methods. Our results suggest that pairs of similar enzyme reactions tend to proceed by different mechanisms. The machine learning method needs only chemoinformatics descriptors as an input and is applicable for regression analysis. The last phase of this work is to test the evolution of chemical mechanisms mapped onto ancestral enzymes. This domain occurrence and abundance in modern proteins has showed that the / architecture is probably the oldest fold design. These observations have important implications for the origins of biochemistry and for exploring structure-function relationships. Over half of the known mechanisms are introduced before architectural diversification over the evolutionary time. The other halves of the mechanisms are invented gradually over the evolutionary timeline just after organismal diversification. Moreover, many common mechanisms includes fundamental building blocks of enzyme chemistry were found to be associated with the ancestral fold.
Type
Thesis, PhD Doctor of Philosophy
Collections
  • Chemistry Theses
Description of related resources
Nath N, Mitchell JBO: Is EC class predictable from reaction mechanism? BMC Bioinformatics 2012
Mavridis L, Nath N, Mitchell JBO: PFClust : a novel parameter free clustering algorithm PFClust : a novel parameter free clustering algorithm. 2013
McDonagh JL, Nath N, De Ferrari L, van Mourik T, Mitchell JBO: Uniting cheminformatics and chemical theory to predict the intrinsic aqueous solubility of crystalline druglike molecules. J Chem Inf Model 2014, 54:844–56.
Nath N, Mitchell JBO, Caetano-Anollés G: The Natural History of Biocatalytic Mechanisms. PLoS Comput Biol 2014, 10:e1003642.
Alderson RG, Ferrari L De, Mavridis L, Mcdonagh JL, John BO, Nath N: Enzyme Informatics. Curr Top Med Chem 2012, 12:1911–1923.
URI
http://hdl.handle.net/10023/6899

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter