St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Alternative p-doped hole transport material for low operating voltage and high efficiency organic light-emitting diodes

Thumbnail
View/Open
murawski2014applphyslett113303.pdf (1.399Mb)
Date
15/09/2014
Author
Murawski, Caroline
Fuchs, Cornelius
Hofmann, Simone
Leo, Karl
Gather, Malte C.
Keywords
Electroluminescent devices
Roll-off
Layers
Dopants
QC Physics
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
We investigate the properties of N,N'-[(Diphenyl-N,N'-bis) 9,9,-dimethyl-fluoren-2-yl]-benzidine (BF-DPB) as hole transport material (HTL) in organic light-emitting diodes (OLEDs) and compare BF-DPB to the commonly used HTLs N,N,N',N'-tetrakis(4-methoxyphenyl)-benzidine (MeO-TPD), 2,2',7,7'-tetrakis(N,N'-di-p-methylphenylamino)-9,9'-spirobifluorene (Spiro-TTB), and N, N'-di(naphtalene-1-yl)-N,N'-diphenylbenzidine (NPB). The influence of 2,2'-(perfluoronaphthalene-2,6-diylidene)dimalononitrile (F6-TCNNQ p-dopant) concentration in BF-DPB on the operation voltage and efficiency of red and green phosphorescent OLEDs is studied; best results are achieved at 4 wt. % doping. Without any light extraction structure, BF-DPB based red (green) OLEDs achieve a luminous efficacy of 35.1 lm/W (74.0 lm/W) at 1000 cd/m(2) and reach a very high brightness of 10 000 cd/m(2) at a very low voltage of 3.2 V (3.1 V). We attribute this exceptionally low driving voltage to the high ionization potential of BF-DPB which enables more efficient hole injection from BF-DPB to the adjacent electron blocking layer. The high efficiency and low driving voltage lead to a significantly lower luminous efficacy roll-off compared to the other compounds and render BF-DPB an excellent HTL material for highly efficient OLEDs. 
Citation
Murawski , C , Fuchs , C , Hofmann , S , Leo , K & Gather , M C 2014 , ' Alternative p-doped hole transport material for low operating voltage and high efficiency organic light-emitting diodes ' , Applied Physics Letters , vol. 105 , no. 11 , 113303 . https://doi.org/10.1063/1.4896127
Publication
Applied Physics Letters
Status
Peer reviewed
DOI
https://doi.org/10.1063/1.4896127
ISSN
0003-6951
Type
Journal article
Rights
Copyright 2014 AIP Publishing LLC. Alternative p-doped hole transport material for low operating voltage and high efficiency organic light-emitting diodes Murawski, C., Fuchs, C., Hofmann, S., Leo, K. & Gather, M. C. 15 Sep 2014 In : Applied Physics Letters. 105, 11, 5 p.113303 available from http://scitation.aip.org/content/aip/journal/apl/105/11/10.1063/1.4896127
Description
This work received funding from the European Community Seventh Framework Programme under Grant Agreement No. FP7 267995 (NUDEV) and from the European Social Fund and the free state of Saxony through the OrganoMechanics project.
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/6878

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter