Inflations of geometric grid classes of permutations
View/ Open
Date
02/2015Grant ID
EP/J006440/1
EP/H011978/1
Metadata
Show full item recordAltmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Geometric grid classes and the substitution decomposition have both been shown to be fundamental in the understanding of the structure of permutation classes. In particular, these are the two main tools in the recent classification of permutation classes of growth rate less than κ ≈ 2.20557 (a specific algebraic integer at which infinite antichains first appear). Using language- and order-theoretic methods, we prove that the substitution closures of geometric grid classes are well partially ordered, finitely based, and that all their subclasses have algebraic generating functions. We go on to show that the inflation of a geometric grid class by a strongly rational class is well partially ordered, and that all its subclasses have rational generating functions. This latter fact allows us to conclude that every permutation class with growth rate less than κ has a rational generating function. This bound is tight as there are permutation classes with growth rate κ which have nonrational generating functions.
Citation
Albert , M D , Ruskuc , N & Vatter , V 2015 , ' Inflations of geometric grid classes of permutations ' , Israel Journal of Mathematics , vol. 205 , no. 1 , pp. 73-108 . https://doi.org/10.1007/s11856-014-1098-8
Publication
Israel Journal of Mathematics
Status
Peer reviewed
ISSN
0021-2172Type
Journal article
Rights
© 2014. The Hebrew University Magnes Press. This is the accepted version of the following article: This is the preprint version before acceptance of the following article: Exact dimensionality and projections of random self-similar measures and sets Falconer, K. & Jin, X. 2014 In : Journal of the London Mathematical Society. The final publication is available at Springer via http://dx.doi.org/10.1007/s11856-014-1098-8
Description
All three authors were partially supported by EPSRC via the grant EP/J006440/1.Collections
Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.