Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorGather, Malte Christian
dc.contributor.authorYun, Seok Hyun
dc.date.accessioned2015-06-07T23:10:54Z
dc.date.available2015-06-07T23:10:54Z
dc.date.issued2014-12-08
dc.identifier.citationGather , M C & Yun , S H 2014 , ' Bio-optimized energy transfer in densely packed fluorescent protein enables near-maximal luminescence and solid-state lasers ' , Nature Communications , vol. 5 , 5722 . https://doi.org/10.1038/ncomms6722en
dc.identifier.issn2041-1723
dc.identifier.otherPURE: 156677321
dc.identifier.otherPURE UUID: 1e124b7b-7dd1-498e-a04c-b1fed6530301
dc.identifier.otherScopus: 84916907840
dc.identifier.otherORCID: /0000-0002-4857-5562/work/47136475
dc.identifier.otherWOS: 000347229600005
dc.identifier.urihttps://hdl.handle.net/10023/6773
dc.descriptionThis work was supported by the US National Science Foundation (ECCS- 1101947), National Institutes of Health (P41EB015903, R21EB013761), Department of Defense (FA9550-11-1-0331), and the Korea National Research Foundation (R31-2008-000-10071-0). M.C.G. acknowledges support from the Bullock-Wellman Fellowship, the Daimler and Benz Fellowship and the Marie Curie Career Integration Grant (PCIG12-GA-2012-334407).en
dc.description.abstractBioluminescent organisms are likely to have an evolutionary drive towards high radiance. As such, bio-optimized materials derived from them hold great promise for photonic applications. Here, we show that biologically produced fluorescent proteins retain their high brightness even at the maximum density in solid state through a special molecular structure that provides optimal balance between high protein concentration and low resonance energy transfer self-quenching. Dried films of ​green fluorescent protein show low fluorescence quenching (−7 dB) and support strong optical amplification (gnet=22 cm−1; 96 dB cm−1). Using these properties, we demonstrate vertical cavity surface emitting micro-lasers with low threshold (<100 pJ, outperforming organic semiconductor lasers) and self-assembled all-protein ring lasers. Moreover, solid-state blends of different proteins support efficient Förster resonance energy transfer, with sensitivity to intermolecular distance thus allowing all-optical sensing. The design of fluorescent proteins may be exploited for bio-inspired solid-state luminescent molecules or nanoparticles.
dc.format.extent8
dc.language.isoeng
dc.relation.ispartofNature Communicationsen
dc.rights© 2014. Macmillan Publishers Limited. All rights reserved. NPG Terms of reuse of archived manuscipts applies http://www.nature.com/authors/policies/license.html, The final version of record can be be found at: http://dx.doi.org/10.1038/ncomms6722en
dc.subjectQC Physicsen
dc.subject.lccQCen
dc.titleBio-optimized energy transfer in densely packed fluorescent protein enables near-maximal luminescence and solid-state lasersen
dc.typeJournal articleen
dc.contributor.sponsorEuropean Commissionen
dc.description.versionPostprinten
dc.contributor.institutionUniversity of St Andrews. School of Physics and Astronomyen
dc.contributor.institutionUniversity of St Andrews. Biomedical Sciences Research Complexen
dc.identifier.doihttps://doi.org/10.1038/ncomms6722
dc.description.statusPeer revieweden
dc.date.embargoedUntil2015-06-08
dc.identifier.urlhttp://www.nature.com/ncomms/2014/141208/ncomms6722/full/ncomms6722.html#supplementary-informationen
dc.identifier.grantnumberPCIG12-GA-2012-334407en


This item appears in the following Collection(s)

Show simple item record