Materials challenges in rechargeable lithium-air batteries
Abstract
Lithium-air batteries have received extraordinary attention recently owing to their theoretical gravimetric energies being considerably higher than those of Li-ion batteries. There are, however, significant challenges to practical implementation, including low energy efficiency, cycle life, and power capability. These are due primarily to the lack of fundamental understanding of oxygen reduction and evolution reaction kinetics and parasitic reactions between oxygen redox intermediate species and nominally inactive battery components such as carbon in the oxygen electrode and electrolytes. In this article, we discuss recent advances in the mechanistic understanding of oxygen redox reactions in nonaqueous electrolytes and the search for electrolytes and electrode materials that are chemically stable in the oxygen electrode. In addition, methods to protect lithium metal against corrosion by water and dendrite formation in aqueous lithium-air batteries are discussed. Further materials innovations lie at the heart of research and development efforts that are needed to enable the development of lithium-oxygen batteries with enhanced round-trip efficiency and cycle life.
Citation
Kwabi , D G , Ortiz-Vitoriano , N , Freunberger , S A , Chen , Y , Imanishi , N , Bruce , P G & Shao-Horn , Y 2014 , ' Materials challenges in rechargeable lithium-air batteries ' , MRS Bulletin , vol. 39 , no. 5 , pp. 443-452 . https://doi.org/10.1557/mrs.2014.87
Publication
MRS Bulletin
Status
Peer reviewed
ISSN
0883-7694Type
Journal article
Rights
Copyright © Materials Research Society 2014
Description
Y.S-H., N.O.-V. and D.G.K. acknowledge the Robert Bosch Company for a Bosch Energy Research Network Grant, the CERC-CVC US China Clean Energy Research Center-Clean Vehicles Consortium of the Department of Energy (under award number DE—PI0000012), and the MRSEC program of the National Science Foundation for their support (under award number DMR—0819762). N.O.-V. acknowledges a Marie Curie International Outgoing Fellowship within the seventh European Community Framework Programme (2012). P.G.B. acknowledges the EPSRC for financial support, including the SUPERGEN program. S.A.F. acknowledges financial support by the Austrian Federal Ministry of Economy, Family and Youth and the Austrian National Foundation for Research, Technology and Development.Collections
Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.