St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Characterization of the transcriptome of fast and slow muscle myotomal fibres in the pacu (Piaractus mesopotamicus)

Thumbnail
View/Open
Serrana_2015_BMCG_Characterization_CC.pdf (2.408Mb)
Date
14/03/2015
Author
Mareco, E.A.
Garcia de la Serrana Castillo, Daniel
Johnston, I.A.
Dal-Pai-Silva, M.
Keywords
Paralogues
Ubiquitin-specific proteases (USP)
Aquaculture genomics
QH426 Genetics
QH301 Biology
DAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Background: The Pacu (Piaractus mesopotamicus) is a member of the Characiform family native to the Prata Basin (South America) and a target for the aquaculture industry. A limitation for the development of a selective breeding program for this species is a lack of available genetic information. The primary objectives of the present study were 1) to increase the genetic resources available for the species, 2) to exploit the anatomical separation of myotomal fibres types to compare the transcriptomes of slow and fast muscle phenotypes and 3) to systematically investigate the expression of Ubiquitin Specific Protease (USP) family members in fast and slow muscle in response to fasting and refeeding. Results: We generated 0.6 Tb of pair-end reads from slow and fast skeletal muscle libraries. Over 665 million reads were assembled into 504,065 contigs with an average length of 1,334 bp and N50=2,772 bp. We successfully annotated nearly 47% of the transcriptome and identified around 15,000 unique genes and over 8000 complete coding sequences. 319 KEGG metabolic pathways were also annotated and 380 putative microsatellites were identified. 956 and 604 genes were differentially expressed between slow and fast skeletal muscle, respectively. 442 paralogues pairs arising from the teleost-specific whole genome duplication were identified, with the majority showing different expression patterns between fibres types (301 in slow and 245 in fast skeletal muscle). 45 members of the USP family were identified in the transcriptome. Transcript levels were quantified by qPCR in a separate fasting and refeeding experiment. USP genes in fast muscle showed a similar transient increase in expression with fasting as the better characterized E3 ubiquitin ligases. Conclusion: We have generated a 53-fold coverage transcriptome for fast and slow myotomal muscle in the pacu (Piaractus mesopotamicus) significantly increasing the genetic resources available for this important aquaculture species. We describe significant differences in gene expression between muscle fibre types for fundamental components of general metabolism, the Pi3k/Akt/mTor network and myogenesis, including detailed analysis of paralogue expression. We also provide a comprehensive description of USP family member expression between muscle fibre types and with changing nutritional status.
Citation
Mareco , E A , Garcia de la Serrana Castillo , D , Johnston , I A & Dal-Pai-Silva , M 2015 , ' Characterization of the transcriptome of fast and slow muscle myotomal fibres in the pacu (Piaractus mesopotamicus) ' , BMC Genomics , vol. 16 , 182 . https://doi.org/10.1186/s12864-015-1423-6
Publication
BMC Genomics
Status
Peer reviewed
DOI
https://doi.org/10.1186/s12864-015-1423-6
ISSN
1471-2164
Type
Journal article
Rights
© 2015 Mareco et al.; licensee BioMed Central. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Description
MDPS and EAM were supported by FAPESP, Proc. n° 12/02489-4 and 2011/09346-1. This work also received funding from CAPES, Proc. n° 2524/12. IAJ and DGDLS were supported by the Marine Alliance for Science and Technology for Scotland pooling initiative and Scottish Funding Council grant number HR09011.
Collections
  • University of St Andrews Research
URL
http://www.biomedcentral.com/1471-2164/16/182/additional
URI
http://hdl.handle.net/10023/6473

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter