St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Effects of high temperature and CO2 on intracellular DMSP in the cold-water coral Lophelia pertusa

Thumbnail
View/Open
Burdett_et_al_2014_Mar_Bio_Post_print.pdf (767.0Kb)
Date
04/2014
Author
Burdett, Heidi
Carruthers, Madeleine
Donohue, Penelope
Wicks, Laura
Hennige, Sebastian
Roberts, Murray
Kamenos, Nicholas
Keywords
GE Environmental Sciences
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Significant warming and acidification of the oceans is projected to occur by the end of the century. CO2 vents, areas of upwelling and downwelling, and potential leaks from carbon capture and storage facilities may also cause localised environmental changes, enhancing or depressing the effect of global climate change. Cold-water coral ecosystems are threatened by future changes in carbonate chemistry, yet our knowledge of the response of these corals to high temperature and high CO2 conditions is limited. Dimethylsulphoniopropionate (DMSP), and its breakdown product dimethylsulphide (DMS), are putative antioxidants that may be accumulated by invertebrates via their food or symbionts, although recent research suggests that some invertebrates may also be able to synthesise DMSP. This study provides the first information on the impact of high temperature (12°C) and high CO2 (817 ppm) on intracellular DMSP in the cold-water coral Lophelia pertusa from the Mingulay Reef Complex, Scotland (56°49′N, 07°23′W), where in situ environmental conditions are meditated by tidally induced downwellings. An increase in intracellular DMSP under high CO2 conditions was observed, whilst water column particulate DMS + DMSP was reduced. In both high temperature treatments, intracellular DMSP was similar to the control treatment, whilst dissolved DMSP + DMS was not significantly different between any of the treatments. These results suggest that L. pertusa accumulates DMSP from the surrounding water column; uptake may be up-regulated under high CO2 conditions, but mediated by high temperature. These results provide new insight into the biotic control of deep-sea biogeochemistry and may impact our understanding of the global sulphur cycle, and the survival of cold-water corals under projected global change.
Citation
Burdett , H , Carruthers , M , Donohue , P , Wicks , L , Hennige , S , Roberts , M & Kamenos , N 2014 , ' Effects of high temperature and CO2 on intracellular DMSP in the cold-water coral Lophelia pertusa ' , Marine Biology , vol. 161 , no. 7 , pp. 1499-1506 . https://doi.org/10.1007/s00227-014-2435-5
Publication
Marine Biology
Status
Peer reviewed
DOI
https://doi.org/10.1007/s00227-014-2435-5
ISSN
0025-3162
Type
Journal article
Rights
© 2014 The Authors. The final publication is available at Springer via http://dx.doi.org/10.1007/s00227-014-2435-5
Description
This paper is a contribution to the UK Ocean acidification research Programme (Natural Environment Research Council (NERC) grant NE/H017305/) and to the Marine Alliance for Science and Technology Scotland (MASTS). This research was conducted whilst HLB was initially in receipt of NERC studentship funding (NE/H525303/1) and ultimately a MASTS Research Fellowship, PJCD was in receipt of a MASTS PhD studentship, NAK was in receipt of Royal Society of Edinburgh/Scottish Government Fellow ship (RES 48704/1) and SJH was in receipt of a NERC Independent Research Fellowship (NE/K009028/1). SJH, LCW and JMR acknowledge support from Heriot–Watt University’s Environment and Climate Change Theme.
Collections
  • University of St Andrews Research
URL
http://link.springer.com/article/10.1007%2Fs00227-014-2435-5
URI
http://hdl.handle.net/10023/6412

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter