Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorWinkler, K.
dc.contributor.authorFischer, J.
dc.contributor.authorSchade, A.
dc.contributor.authorAmthor, M.
dc.contributor.authorDall, R.
dc.contributor.authorGeßler, J.
dc.contributor.authorEmmerling, M.
dc.contributor.authorOstrovskaya, E.A.
dc.contributor.authorKamp, M.
dc.contributor.authorSchneider, C.
dc.contributor.authorHöfling, S.
dc.date.accessioned2015-03-26T11:01:02Z
dc.date.available2015-03-26T11:01:02Z
dc.date.issued2015-01-30
dc.identifier176912759
dc.identifier04b35b88-ce73-42fd-a669-58875ca1d8cd
dc.identifier84924294275
dc.identifier000352864600001
dc.identifier.citationWinkler , K , Fischer , J , Schade , A , Amthor , M , Dall , R , Geßler , J , Emmerling , M , Ostrovskaya , E A , Kamp , M , Schneider , C & Höfling , S 2015 , ' A polariton condensate in a photonic crystal potential landscape ' , New Journal of Physics , vol. 17 . https://doi.org/10.1088/1367-2630/17/2/023001en
dc.identifier.issn1367-2630
dc.identifier.urihttps://hdl.handle.net/10023/6342
dc.descriptionThis work has been supported by the State of Bavaria and the Australian Research Council (ARC). The authors thank M D Fraser, N Y Kim, Y Yamamoto, and V D Kulakovskii for fruitful discussions. This publication was funded by the German Research Foundation (DFG) and the University of Wuerzburg in the funding programme Open Access Publishing.en
dc.description.abstractThe possibility of investigating macroscopic coherent quantum states in polariton condensates and of engineering polariton landscapes in semiconductors has triggered interest in using polaritonic systems to simulate complex many-body phenomena. However, advanced experiments require superior trapping techniques that allow for the engineering of periodic and arbitrary potentials with strong on-site localization, clean condensate formation, and nearest-neighbor coupling. Here we establish a technology that meets these demands and enables strong, potentially tunable trapping without affecting the favorable polariton characteristics. The traps are based on a locally elongated microcavity which can be formed by standard lithography. We observe polariton condensation with non-resonant pumping in single traps and photonic crystal square lattice arrays. In the latter structures, we observe pronounced energy bands, complete band gaps, and spontaneous condensation at the M-point of the Brillouin zone.
dc.format.extent1920229
dc.language.isoeng
dc.relation.ispartofNew Journal of Physicsen
dc.subjectExciton polaritonen
dc.subjectMicrocavityen
dc.subjectOptical latticeen
dc.subjectQuantum simulationen
dc.subjectQC Physicsen
dc.subjectNDASen
dc.subject.lccQCen
dc.titleA polariton condensate in a photonic crystal potential landscapeen
dc.typeJournal articleen
dc.contributor.institutionUniversity of St Andrews. School of Physics and Astronomyen
dc.contributor.institutionUniversity of St Andrews. Condensed Matter Physicsen
dc.identifier.doi10.1088/1367-2630/17/2/023001
dc.description.statusPeer revieweden


This item appears in the following Collection(s)

Show simple item record