Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorKirton, Peter George
dc.contributor.authorKeeling, Jonathan Mark James
dc.date.accessioned2015-03-25T15:01:02Z
dc.date.available2015-03-25T15:01:02Z
dc.date.issued2015-03-20
dc.identifier.citationKirton , P G & Keeling , J M J 2015 , ' Thermalization and breakdown of thermalization in photon condensates ' , Physical Review. A, Atomic, molecular, and optical physics , vol. 91 , no. 3 , 033826 . https://doi.org/10.1103/PhysRevA.91.033826en
dc.identifier.issn1050-2947
dc.identifier.otherPURE: 176677423
dc.identifier.otherPURE UUID: 845e710d-3120-42ef-a992-1c236e47dacf
dc.identifier.otherScopus: 84927546498
dc.identifier.otherORCID: /0000-0002-4283-552X/work/27559417
dc.identifier.otherWOS: 000352074800008
dc.identifier.urihttps://hdl.handle.net/10023/6324
dc.descriptionThe authors acknowledge financial support from EPSRC program “TOPNES” (Grant No. EP/I031014/1) and EPSRC (Grant No. EP/G004714/2). P.G.K. acknowledges support from EPSRC (Grant No. EP/M010910/1).en
dc.description.abstractWe examine in detail the mechanisms behind thermalization and Bose-Einstein condensation (BEC) of a gas of photons in a dye-filled microcavity. We derive a microscopic quantum model, based on that of a standard laser, and show how this model can reproduce the behavior of recent experiments. Using the rate-equation approximation of this model, we show how a thermal distribution of photons arises. We go on to describe how the nonequilibrium effects in our model can cause thermalization to break down as one moves away from the experimental parameter values. In particular, we examine the effects of changing cavity length, and of altering the vibrational spectrum of the dye molecules. We are able to identify two measures which quantify whether the system is in thermal equilibrium. Using these, we plot “phase diagrams” distinguishing BEC and standard lasing regimes. Going beyond the rate-equation approximation, our quantum model allows us to investigate both the second-order coherence g(2) and the linewidth of the emission from the cavity. We show how the linewidth collapses as the system transitions to a Bose condensed state, and compare the results to the Schawlow-Townes linewidth.
dc.format.extent15
dc.language.isoeng
dc.relation.ispartofPhysical Review. A, Atomic, molecular, and optical physicsen
dc.rights© 2015 American Physical Society. Originally published in Physical Review A, http://dx.doi.org/10.1103/PhysRevA.91.033826. Reproduced in accordance with APS transfer of copyright agreement.en
dc.subjectQC Physicsen
dc.subjectNDASen
dc.subject.lccQCen
dc.titleThermalization and breakdown of thermalization in photon condensatesen
dc.typeJournal articleen
dc.contributor.sponsorEPSRCen
dc.contributor.sponsorEPSRCen
dc.contributor.sponsorEPSRCen
dc.description.versionPublisher PDFen
dc.contributor.institutionUniversity of St Andrews. School of Physics and Astronomyen
dc.contributor.institutionUniversity of St Andrews. Condensed Matter Physicsen
dc.identifier.doihttps://doi.org/10.1103/PhysRevA.91.033826
dc.description.statusPeer revieweden
dc.identifier.grantnumberEP/G004714/1en
dc.identifier.grantnumberEP/I031014/1en
dc.identifier.grantnumberEP/M010910/1en


This item appears in the following Collection(s)

Show simple item record