St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • Chemistry (School of)
  • Chemistry
  • Chemistry Theses
  • View Item
  •   St Andrews Research Repository
  • Chemistry (School of)
  • Chemistry
  • Chemistry Theses
  • View Item
  •   St Andrews Research Repository
  • Chemistry (School of)
  • Chemistry
  • Chemistry Theses
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Quinone derivatives as novel single-molecule components for nano-electronics

Thumbnail
View/Open
Thefulltextofthisdocumentisnotavailable.pdf (5.867Kb)
Date
11/2014
Author
Simpson, Grant J.
Supervisor
Schaub, Renald
Metadata
Show full item record
Altmetrics Handle Statistics
Abstract
In this thesis, quinone derivative molecules supported on a Cu(110) surface are studied using scanning tunnelling microscopy (STM). The experimentally investigated system is based on the bistable nature of these compounds, and so the work is introduced in the wider context of molecular electronics (Chapter 1). The theory and experimental techniques are also described (Chapters 2 and 3). In Chapter 4 the switching behaviour of azophenine (AP) and azotolyline (AT) is characterised using STM imaging and spectroscopy, and is demonstrated to be based on a hydrogen tautomerisation reaction. The activation energy for switching is quantified by measurement of the rate of switching as a function of varying bias voltage, and the process is determined to be stimulated by inelastic electron tunnelling. The reaction pathway is also revealed using theoretical modelling. Chapter 5 focusses on the condensed phase of AP on the Cu(110) surface. The switching behaviour is found to be largely quenched in the self-assembled phase, so statistical analyses of the AP-AP and AP-Cu interactions are conducted in order to try to explain this. Chapter 6 returns to the study of isolated AP molecules and investigates the spatial dependence of the switch with respect to the location of electronic excitation. It is shown that the final state of the molecule can be accurately selected by exciting specific functional groups within the molecule. This control originates from the non-degenerate reaction pathways for the sequential transfer of the two tautomeric protons. The work is then discussed in terms of future outlook and potential applications for bistable molecules.
Type
Thesis, PhD Doctor of Philosophy
Rights
Embargo Date: Print and electronic copy restricted until 4th November 2016
Embargo Reason: Thesis restricted in accordance with University regulations
Collections
  • Chemistry Theses
URI
http://hdl.handle.net/10023/6309

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter