St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

P- to n-type conductivity transition in 1.0 eV GaInNAs solar cells controlled by the V/III ratio

Thumbnail
View/Open
Hofling_2015_APL_Conductivity.pdf (1.097Mb)
Date
09/02/2015
Author
Langer, F.
Perl, S.
Höfling, S.
Kamp, M.
Keywords
QC Physics
NDAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
In this work, we report a p- to n-type conductivity transition of GaInNAs (1.0 eV bandgap) layers in p-i-n dilute nitride solar cells continuously controlled by the V/III ratio during growth. Near the transition region, we were able to produce GaInNAs layers with very low effective electrically active doping concentrations resulting in wide depleted areas. We obtained internal quantum efficiencies (IQEs) up to 85% at 0.2 eV above the bandgap. However, the high IQE comes along with an increased dark current density resulting in a decreased open circuit voltage of about 0.2 V. This indicates the formation of non-radiant defect centers related to the p-type to n-type transition. Rapid-thermal annealing of the solar cells on the one hand helps to anneal some of these defects but on the other hand increases the effective doping concentrations.
Citation
Langer , F , Perl , S , Höfling , S & Kamp , M 2015 , ' P- to n-type conductivity transition in 1.0 eV GaInNAs solar cells controlled by the V/III ratio ' , Applied Physics Letters , vol. 106 , no. 6 , 063905 . https://doi.org/10.1063/1.4909507
Publication
Applied Physics Letters
Status
Peer reviewed
DOI
https://doi.org/10.1063/1.4909507
ISSN
0003-6951
Type
Journal article
Rights
Copyright 2015 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in: Langer, F., Perl, S., Höfling, S., & Kamp, M. (2015). P- to n-type conductivity transition in 1.0 eV GaInNAs solar cells controlled by the V/III ratio. Applied Physics Letters, 106(6), [063905], and may be found at http://scitation.aip.org/content/aip/journal/apl/106/6/10.1063/1.4909507
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/6266

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter