Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorRocha da Silva, G.
dc.contributor.authorFalceta-Goncalves, D.
dc.contributor.authorKowal, G.
dc.contributor.authorde Gouveia Dal Pino, E. M.
dc.date.accessioned2015-03-06T16:01:04Z
dc.date.available2015-03-06T16:01:04Z
dc.date.issued2015-01
dc.identifier172962299
dc.identifierd13c53cd-dacf-430c-8f48-12747a2a2f79
dc.identifier000347518300008
dc.identifier84924441235
dc.identifier000347518300008
dc.identifier.citationRocha da Silva , G , Falceta-Goncalves , D , Kowal , G & de Gouveia Dal Pino , E M 2015 , ' Ambient magnetic field amplification in shock fronts of relativistic jets : an application to GRB afterglows ' , Monthly Notices of the Royal Astronomical Society , vol. 446 , no. 1 , pp. 104-119 . https://doi.org/10.1093/mnras/stu2104en
dc.identifier.issn0035-8711
dc.identifier.urihttps://hdl.handle.net/10023/6188
dc.descriptionGRS thanks CNPQ for financial support. DFG thanks the European Research Council (ADG-2011 ECOGAL) and the Brazilian agencies CNPq (No. 300382/2008-1), CAPES (3400-13-1) and FAPESP (No. 2011/12909-8) for financial support. GK thanks FAPESP (No. 2009/50053-8, 2011/51275-4, 2013/04073-2, 2013/18815-0) for financial support. EMGDP thanks FAPESP (No. 2006/50654-3) and CNPq (306598/2009-4) for financial support. Date of Acceptance: 06/10/2014en
dc.description.abstractStrong downstream magnetic fields of the order of ∼1 G, with large correlation lengths, are believed to cause the large synchrotron emission at the afterglow phase of gamma-ray bursts (GRBs). Despite the recent theoretical efforts, models have failed to fully explain the amplification of the magnetic field, particularly in a matter-dominated scenario. We revisit the problem by considering the synchrotron emission to occur at the expanding shock front of a weakly magnetized relativistic jet over a magnetized surrounding medium. Analytical estimates and a number of high-resolution 2D relativistic magnetohydrodynamical (RMHD) simulations are provided. Jet opening angles of θ = 0°–20°, and ambient to jet density ratios of 10−4–102 were considered. We found that most of the amplification is due to compression of the ambient magnetic field at the contact discontinuity between the reverse and forward shocks at the jet head, with substantial pile-up of the magnetic field lines as the jet propagates sweeping the ambient field lines. The pile-up is maximum for θ → 0, decreasing with θ, but larger than in the spherical blast problem. Values obtained for certain models are able to explain the observed intensities. The maximum correlation lengths found for such strong fields is of lcorr ≤ 1014 cm, 2–6 orders of magnitude larger than the found in previous works.
dc.format.extent16
dc.format.extent5289092
dc.language.isoeng
dc.relation.ispartofMonthly Notices of the Royal Astronomical Societyen
dc.subjectShock wavesen
dc.subjectMethods: numericalen
dc.subjectGamma-ray burst: generalen
dc.subjectISM jets and outflowsen
dc.subjectISM: magnetic fieldsen
dc.subjectGamma-ray burstsen
dc.subject3D hydrodynamical simulationsen
dc.subjectParticle-accelerationen
dc.subjectNumerical simulationsen
dc.subjectAstrophysical jetsen
dc.subjectProtostellar jetsen
dc.subjectFireball modelen
dc.subjectLight curvesen
dc.subjectMagnetohydrodynamic turbulenceen
dc.subject3-dimensional simulationsen
dc.subjectQC Physicsen
dc.subjectNDASen
dc.subject.lccQCen
dc.titleAmbient magnetic field amplification in shock fronts of relativistic jets : an application to GRB afterglowsen
dc.typeJournal articleen
dc.contributor.sponsorEuropean Research Councilen
dc.contributor.institutionUniversity of St Andrews. School of Physics and Astronomyen
dc.identifier.doi10.1093/mnras/stu2104
dc.description.statusPeer revieweden
dc.identifier.grantnumberen


This item appears in the following Collection(s)

Show simple item record